*A Working Textbook*

Author: Aisling McCluskey,Brian McMaster

Publisher: Oxford University Press

ISBN: 0198702337

Category: Mathematics

Page: 144

View: 4860

Skip to content
#
Search Results for: undergraduate-topology-a-working-textbook

## Undergraduate Topology

This textbook offers an accessible, modern introduction at undergraduate level to an area known variously as general topology, point-set topology or analytic topology with a particular focus on helping students to build theory for themselves. It is the result of several years of the authors' combined university teaching experience stimulated by sustained interest in advanced mathematical thinking and learning, alongside established research careers in analytic topology. Point-set topology is a discipline that needs relatively little background knowledge, but sufficient determination to grasp ideas precisely and to argue with straight and careful logic. Research and long experience in undergraduate mathematics education suggests that an optimal way to learn such a subject is to teach it to yourself, pro-actively, by guided reading of brief skeleton notes and by doing your own spadework to fill in the details and to flesh out the examples. This text will facilitate such an approach for those learners who opt to do it this way and for those instructors who would like to encourage this so-called 'Moore approach', even for a modest segment of the teaching term or for part of the class. In reality, most students simply do not have the combination of time, background and motivation needed to implement such a plan fully. The accessibility, flexibility and completeness of this text enable it to be used equally effectively for more conventional instructor-led courses. Critically, it furnishes a rich variety of exercises and examples, many of which have specimen solutions, through which to gain in confidence and competence.
## Undergraduate Topology

This textbook offers an accessible, modern introduction at undergraduate level to an area known variously as general topology, point-set topology or analytic topology with a particular focus on helping students to build theory for themselves. It is the result of several years of the authors' combined university teaching experience stimulated by sustained interest in advanced mathematical thinking and learning, alongside established research careers in analytic topology. Point-set topology is a discipline that needs relatively little background knowledge, but sufficient determination to grasp ideas precisely and to argue with straight and careful logic. Research and long experience in undergraduate mathematics education suggests that an optimal way to learn such a subject is to teach it to yourself, pro-actively, by guided reading of brief skeleton notes and by doing your own spadework to fill in the details and to flesh out the examples. This text will facilitate such an approach for those learners who opt to do it this way and for those instructors who would like to encourage this so-called 'Moore approach', even for a modest segment of the teaching term or for part of the class. In reality, most students simply do not have the combination of time, background and motivation needed to implement such a plan fully. The accessibility, flexibility and completeness of this text enable it to be used equally effectively for more conventional instructor-led courses. Critically, it furnishes a rich variety of exercises and examples, many of which have specimen solutions, through which to gain in confidence and competence.
## Topology

The book gives an introduction to topology at the advanced undergraduate to beginning graduate level, with an emphasis on its geometric aspects. Part I contains three chapters on basic point set topology, classification of surfaces via handle decompositions, and the fundamental group appropriate for a one semester or two quarter course. Carefully developed exercise sets support high student involvement. Besides exercises embedded within a chapter, there are extensive supplementary exercises to extend the material. Surfaces occur as key examples in treatments of the fundamental group, covering spaces, CW complexes, and homology in the last four chapters. Each chapter of Part I ends with a substantial project. Part II is written in a problem based format. These problems contain appropriate hints and background material to enable the student to work through the basic theory of covering spaces, CW complexes, and homology with the instructor's guidance. Low dimensional cases provide motivation and examples for the general development, with an emphasis on treating geometric ideas first encountered in Part I such as orientation. Part II allows the book to be used for a year long course at the first year graduate level. The book's collection of over 750 exercises range from simple checks of omitted details in arguments, to reinforce the material and increase student involvement, to the development of substantial theorems that have been broken into many steps.The style encourages an active student role. Solutions to selected exercises are included as an appendix. Solutions to all exercises are available to the instructor in electronic form. This text forms the latest in the Oxford Graduate Texts in Mathematics series which publishes textbooks suitable for graduate students in mathematics and its applications. The level of books may range from some suitable for advanced undergraduate courses at one end, to others of interest to research workers. The emphasis is on texts of high mathematical quality in active areas, particularly areas that are not well represented in the literature at present.
## Undergraduate Analysis

Analysis underpins calculus, much as calculus underpins virtually all mathematical sciences. A sound understanding of analysis' results and techniques is therefore valuable for a wide range of disciplines both within mathematics itself and beyond its traditional boundaries. This text seeks to develop such an understanding for undergraduate students on mathematics and mathematically related programmes. Keenly aware of contemporary students' diversity of motivation, background knowledge and time pressures, it consistently strives to blend beneficial aspects of the workbook, the formal teaching text, and the informal and intuitive tutorial discussion. The authors devote ample space and time for development of confidence in handling the fundamental ideas of the topic. They also focus on learning through doing, presenting a comprehensive range of examples and exercises, some worked through in full detail, some supported by sketch solutions and hints, some left open to the reader's initiative. Without undervaluing the absolute necessity of secure logical argument, they legitimise the use of informal, heuristic, even imprecise initial explorations of problems aimed at deciding how to tackle them. In this respect they authors create an atmosphere like that of an apprenticeship, in which the trainee analyst can look over the shoulder of the experienced practitioner.
## Einführung in die Funktionalanalysis

Dieses Buch wendet sich an Studenten der Mathematik und der Physik, welche über Grundkenntnisse in Analysis und linearer Algebra verfügen.
## A Combinatorial Introduction to Topology

Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.
## A Course in Point Set Topology

This textbook in point set topology is aimed at an upper-undergraduate audience. Its gentle pace will be useful to students who are still learning to write proofs. Prerequisites include calculus and at least one semester of analysis, where the student has been properly exposed to the ideas of basic set theory such as subsets, unions, intersections, and functions, as well as convergence and other topological notions in the real line. Appendices are included to bridge the gap between this new material and material found in an analysis course. Metric spaces are one of the more prevalent topological spaces used in other areas and are therefore introduced in the first chapter and emphasized throughout the text. This also conforms to the approach of the book to start with the particular and work toward the more general. Chapter 2 defines and develops abstract topological spaces, with metric spaces as the source of inspiration, and with a focus on Hausdorff spaces. The final chapter concentrates on continuous real-valued functions, culminating in a development of paracompact spaces.
## Choice

## Understanding Topology

"Topology can present significant challenges for undergraduate students of mathematics and the sciences. 'Understanding topology' aims to change that. The perfect introductory topology textbook, 'Understanding topology' requires only a knowledge of calculus and a general familiarity with set theory and logic. Equally approachable and rigorous, the book's clear organization, worked examples, and concise writing style support a thorough understanding of basic topological principles. Professor Shaun V. Ault's unique emphasis on fascinating applications, from chemical dynamics to determining the shape of the universe, will engage students in a way traditional topology textbooks do not"--
## Manifolds and Modular Forms

## Differentialgeometrie, Topologie und Physik

Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.
## Reelle und Komplexe Analysis

Besonderen Wert legt Rudin darauf, dem Leser die Zusammenhänge unterschiedlicher Bereiche der Analysis zu vermitteln und so die Grundlage für ein umfassenderes Verständnis zu schaffen. Das Werk zeichnet sich durch seine wissenschaftliche Prägnanz und Genauigkeit aus und hat damit die Entwicklung der modernen Analysis in nachhaltiger Art und Weise beeinflusst. Der "Baby-Rudin" gehört weltweit zu den beliebtesten Lehrbüchern der Analysis und ist in 13 Sprachen übersetzt. 1993 wurde es mit dem renommierten Steele Prize for Mathematical Exposition der American Mathematical Society ausgezeichnet. Übersetzt von Uwe Krieg.
## Elements of Topology

Topology is a large subject with many branches broadly categorized as algebraic topology, point-set topology, and geometric topology. Point-set topology is the main language for a broad variety of mathematical disciplines. Algebraic topology serves as a powerful tool for studying the problems in geometry and numerous other areas of mathematics. Elements of Topology provides a basic introduction to point-set topology and algebraic topology. It is intended for advanced undergraduate and beginning graduate students with working knowledge of analysis and algebra. Topics discussed include the theory of convergence, function spaces, topological transformation groups, fundamental groups, and covering spaces. The author makes the subject accessible by providing more than 250 worked examples and counterexamples with applications. The text also includes numerous end-of-section exercises to put the material into context.
## General Topology

Among the best available reference introductions to general topology, this volume is appropriate for advanced undergraduate and beginning graduate students. Includes historical notes and over 340 detailed exercises. 1970 edition. Includes 27 figures.
## Mathematik

## Counterexamples in Topology

Over 140 examples, preceded by a succinct exposition of general topology and basic terminology. Each example treated as a whole. Numerous problems and exercises correlated with examples. 1978 edition. Bibliography.
## Topology of surfaces, knots, and manifolds

Master the basic ideas of the topology of manifolds TOPOLOGY OF SURFACES, KNOTS, AND MANIFOLDS offers an intuition-based and example-driven approach to the basic ideas and problems involving manifolds, particularly one- and two-dimensional manifolds. A blend of examples and exercises leads the reader to anticipate general definitions and theorems concerning curves, surfaces, knots, and links--the objects of interest in the appealing set of mathematical ideas known as "rubber sheet geometry." The result is a text that is accessible to a broad range of undergraduate students, yet will provides solid coverage of the mathematics underlying these topics. Here are some of the features that make Carlson's approach work: A student-friendly writing style provides a clear exposition of concepts.mathematical results are presented accurately and main definitions, theorems, and remarks are clearly highlighted for easy reference.Carefully selected exercises, some of which require hands-on work on computer-aided visualization, reinforce the understanding of concepts or further develop ideas.Extensive use of illustrations helps the students develop an intuitive understanding of the material.Frequent historical references chronicle the development of the subject and highlight connections between topology and other areas of mathematics.Chapter summary sections offer a review of each chapter's topics and a transitional look forward to the next chapter.
## Fuzzy Topology

Fuzzy set theory provides us with a framework which is wider than that of classical set theory. Various mathematical structures, whose features emphasize the effects of ordered structure, can be developed on the theory. Fuzzy topology is one such branch, combining ordered structure with topological structure. This branch of mathematics, emerged from the background — processing fuzziness, and locale theory, proposed from the angle of pure mathematics by the great French mathematician Ehresmann, comprise the two most active aspects of topology on lattice, which affect each other. This book is the first monograph to systematically reflect the up-to-date state of fuzzy topology. It emphasizes the so-called “pointed approach” and the effects of stratification structure appearing in fuzzy sets. The monograph can serve as a reference book for mathematicians, researchers, and graduate students working in this branch of mathematics. After an appropriate rearrangements of the chapters and sections, it can also be used as a text for undergraduates. Contents:Fuzzy Topological SpacesOperations on Fuzzy Topological SpacesL-Valued Stratification SpacesConvergence TheoryConnectednessSome Properties Related to CardinalsSeparation (I)Separation (II)CompactnessCompactificationParacompactnessUniformity and ProximityMetric SpacesRelations Between Fuzzy Topological Spaces and Locales Readership: Senior undergraduates, graduate students, and researchers in mathematics and computer science. keywords:Fuzzy;Topology;Fuzzy Lattice;Lattice-valued Topology;Multiple Choice Principle;Coincident Neighborhood Structure;Level Structure;Pointlike Structure;Ordered Structure;Locale “This will be a very useful reference book for everyone working in this field.” Mathematical Reviews
## Grundkurs Topologie

Die Topologie beschäftigt sich mit den qualitativen Eigenschaften geometrischer Objekte. Ihr Begriffsapparat ist so mächtig, dass kaum eine mathematische Struktur nicht mit Gewinn topologisiert wurde. Dieses Buch versteht sich als Brücke von den einführenden Vorlesungen der Analysis und Linearen Algebra zu den fortgeschrittenen Vorlesungen der Algebraischen und Geometrischen Topologie. Es eignet sich besonders für Studierende in einem Bachelor- oder Masterstudiengang der Mathematik, kann aber auch zum Selbststudium für mathematisch interessierte Naturwissenschaftler dienen. Die Autoren legen besonderen Wert auf eine moderne Sprache, welche die vorgestellten Ideen vereinheitlicht und damit erleichtert. Definitionen werden stets mit vielen Beispielen unterlegt und neue Konzepte werden mit zahlreichen Bildern illustriert. Über 170 Übungsaufgaben (mit Lösungen zu ausgewählten Aufgaben auf der Website zum Buch) helfen, die vermittelten Inhalte einzuüben und zu vertiefen. Viele Abschnitte werden ergänzt durch kurze Einblicke in weiterführende Themen, die einen Ausgangspunkt für Studienarbeiten oder Seminarthemen bieten. Neben dem üblichen Stoff zur mengentheoretischen Topologie, der Theorie der Fundamentalgruppen und der Überlagerungen werden auch Bündel, Garben und simpliziale Methoden angesprochen, welche heute zu den Grundbegriffen der Geometrie und Topologie gehören.
## Topological Theory of Dynamical Systems

This monograph aims to provide an advanced account of some aspects of dynamical systems in the framework of general topology, and is intended for use by interested graduate students and working mathematicians. Although some of the topics discussed are relatively new, others are not: this book is not a collection of research papers, but a textbook to present recent developments of the theory that could be the foundations for future developments. This book contains a new theory developed by the authors to deal with problems occurring in diffentiable dynamics that are within the scope of general topology. To follow it, the book provides an adequate foundation for topological theory of dynamical systems, and contains tools which are sufficiently powerful throughout the book. Graduate students (and some undergraduates) with sufficient knowledge of basic general topology, basic topological dynamics, and basic algebraic topology will find little difficulty in reading this book.

Full PDF eBook Download Free

*A Working Textbook*

Author: Aisling McCluskey,Brian McMaster

Publisher: Oxford University Press

ISBN: 0198702337

Category: Mathematics

Page: 144

View: 4860

*A Working Textbook*

Author: Aisling McCluskey,Brian McMaster

Publisher: Oxford University Press, USA

ISBN: 0198702345

Category: Mathematics

Page: 144

View: 7241

*A Geometric Approach*

Author: Terry Lawson

Publisher: Oxford University Press, USA

ISBN: 9780198515975

Category: Fiction

Page: 388

View: 4379

*A Working Textbook*

Author: Aisling McCluskey,Brian McMaster

Publisher: Oxford University Press

ISBN: 0192549839

Category: Mathematics

Page: 496

View: 3618

Author: Reinhold Meise,Dietmar Vogt

Publisher: Springer-Verlag

ISBN: 3322803104

Category: Mathematics

Page: 416

View: 8910

Author: Michael Henle

Publisher: Courier Corporation

ISBN: 9780486679662

Category: Mathematics

Page: 310

View: 5300

Author: John B. Conway

Publisher: Springer Science & Business Media

ISBN: 3319023683

Category: Mathematics

Page: 142

View: 3516

*A Classified Cumulation : Volumes 1-10, March 1964--February 1974*

Author: Richard K. Gardner,Phyllis Grumm

Publisher: N.A

ISBN: N.A

Category: Best books

Page: N.A

View: 8932

*A Practical Introduction*

Author: Shaun V. Ault

Publisher: JHU Press

ISBN: 142142407X

Category: Mathematics

Page: 416

View: 7194

Author: Friedrich Hirzebruch

Publisher: Springer-Verlag

ISBN: 3663140458

Category: Mathematics

Page: 212

View: 1819

Author: Mikio Nakahara

Publisher: Springer-Verlag

ISBN: 3662453002

Category: Science

Page: 597

View: 8401

Author: Walter Rudin

Publisher: Walter de Gruyter

ISBN: 9783486591866

Category: Analysis - Lehrbuch

Page: 499

View: 8089

Author: Tej Bahadur Singh

Publisher: CRC Press

ISBN: 1482215667

Category: Mathematics

Page: 552

View: 6357

Author: Stephen Willard

Publisher: Courier Corporation

ISBN: 0486131785

Category: Mathematics

Page: 384

View: 4148

Author: Timothy Gowers

Publisher: N.A

ISBN: 9783150187067

Category:

Page: 207

View: 5309

Author: Lynn Arthur Steen,J. Arthur Seebach

Publisher: Courier Corporation

ISBN: 0486319296

Category: Mathematics

Page: 272

View: 9633

*a first undergraduate course*

Author: Stephan C. Carlson

Publisher: John Wiley & Sons Inc

ISBN: N.A

Category: Mathematics

Page: 157

View: 5239

Author: Liu Ying-Ming,Luo Mao-Kang

Publisher: World Scientific

ISBN: 9814518204

Category: Computers

Page: 364

View: 3631

Author: Gerd Laures,Markus Szymik

Publisher: Springer-Verlag

ISBN: 3662459531

Category: Mathematics

Page: 242

View: 2223

*Recent Advances*

Author: N. Aoki,K. Hiraide

Publisher: Elsevier

ISBN: 9780080887210

Category: Mathematics

Page: 415

View: 9898