## Type Theory and Formal Proof

An Introduction

Author: Rob Nederpelt,Herman Geuvers

Publisher: Cambridge University Press

ISBN: 1316061086

Category: Computers

Page: N.A

View: 3058

Type theory is a fast-evolving field at the crossroads of logic, computer science and mathematics. This gentle step-by-step introduction is ideal for graduate students and researchers who need to understand the ins and outs of the mathematical machinery, the role of logical rules therein, the essential contribution of definitions and the decisive nature of well-structured proofs. The authors begin with untyped lambda calculus and proceed to several fundamental type systems, including the well-known and powerful Calculus of Constructions. The book also covers the essence of proof checking and proof development, and the use of dependent type theory to formalise mathematics. The only prerequisite is a basic knowledge of undergraduate mathematics. Carefully chosen examples illustrate the theory throughout. Each chapter ends with a summary of the content, some historical context, suggestions for further reading and a selection of exercises to help readers familiarise themselves with the material.
Posted in Computers

## An Introduction to Mathematical Logic and Type Theory

To Truth Through Proof

Author: Peter B. Andrews

Publisher: Springer Science & Business Media

ISBN: 9401599343

Category: Mathematics

Page: 390

View: 9019

In case you are considering to adopt this book for courses with over 50 students, please contact [email protected] for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.
Posted in Mathematics

## Principia Mathematica.

Publisher: N.A

ISBN: N.A

Category: Logic, Symbolic and mathematical

Page: 167

View: 5478

Posted in Logic, Symbolic and mathematical

## Einführung in die mathematische Logik

Klassische Prädikatenlogik

Author: Hans Hermes

Publisher: Springer-Verlag

ISBN: 3322996425

Category: Technology & Engineering

Page: 208

View: 5697

Das vorliegende, 1963 in erster Auflage erschienene Buch ist aus Vorlesungen hervorgegangen. Es soll eine Einführung in die klassische zweiwertige Prädikaten logik geben. Die Beschränkung auf die klassische Logik soll nicht besagen, daß diese Logik prinzipiell einen Vorzug vor anderen, nichtklassischen Logiken besitzt. Die klassische Logik empfiehlt sich jedoch als Einführung in die Logik wegen ihrer Einfachheit und als Fundament für die Anwendung deshalb, weil sie der klassischen Mathematik und damit den darauf aufgebauten exakten Wissenschaften zugrunde liegt. Das Buch wendet sich primär an Studierende der Mathematik, die in den An fängervorlesungen bereits einige grundlegende mathematische Begriffe, wie den Gruppenbegriff, kennengelernt haben. Der Leser soll dazu geführt werden, daß er die Vorteile einer Formalisierung einsieht. Der übergang von der Umgangssprache zu einer formalisierten Sprache, welcher erfahrungsgemäß gewisse Schwierigkeiten bereitet, wird eingehend besprochen und eingeübt. Die Analyse desmathemati schen Umgangs mit den grundlegenden mathematischen Strukturen führt in zwangloser Weise zum semantisch begründeten Folgerungsbegriff.
Posted in Technology & Engineering

## PHP and MySQL für Dummies

Publisher: John Wiley & Sons

ISBN: 3527812652

Category: Computers

Page: 464

View: 3252

PHP ist nach wie vor die wichtigste serverseitige Websprache und MySQL das wichtigste Webdatenbank-Managementsystem. Als Team sind die beiden unschlagbar, wenn es um die Erstellung dynamischer Webseiten geht. In diesem Buch erklärt Ihnen Janet Valade die Grundlagen und das Zusammenspiel von PHP und MySQL anhand typischer Anwendungsbeispiele.
Posted in Computers

## Logic and Computation

Interactive Proof with Cambridge LCF

Author: Lawrence C. Paulson

Publisher: Cambridge University Press

ISBN: 9780521395601

Category: Computers

Page: 320

View: 577

Logic and Computation is concerned with techniques for formal theorem-proving, with particular reference to Cambridge LCF (Logic for Computable Functions). Cambridge LCF is a computer program for reasoning about computation. It combines methods of mathematical logic with domain theory, the basis of the denotational approach to specifying the meaning of statements in a programming language. This book consists of two parts. Part I outlines the mathematical preliminaries: elementary logic and domain theory. They are explained at an intuitive level, giving references to more advanced reading. Part II provides enough detail to serve as a reference manual for Cambridge LCF. It will also be a useful guide for implementors of other programs based on the LCF approach.
Posted in Computers

## Proof Theory

An Introduction

Author: Wolfram Pohlers

Publisher: Springer Science & Business Media

ISBN: 3540518428

Category: Mathematics

Page: 213

View: 5962

Although this is an introductory text on proof theory, most of its contents is not found in a unified form elsewhere in the literature, except at a very advanced level. The heart of the book is the ordinal analysis of axiom systems, with particular emphasis on that of the impredicative theory of elementary inductive definitions on the natural numbers. The "constructive" consequences of ordinal analysis are sketched out in the epilogue. The book provides a self-contained treatment assuming no prior knowledge of proof theory and almost none of logic. The author has, moreover, endeavoured not to use the "cabal language" of proof theory, but only a language familiar to most readers.
Posted in Mathematics

## Einführung in die Automatentheorie, formale Sprachen und Komplexitätstheorie

Author: John E. Hopcroft,Rajeev Motwani,Jeffrey D. Ullman

Publisher: N.A

ISBN: 9783827370204

Category: Automatentheorie - Lehrbuch

Page: 528

View: 1424

Posted in Automatentheorie - Lehrbuch

## Programming in Martin-Löf's type theory

an introduction

Author: Bengt Nordström,Kent Petersson,Jan M. Smith

Publisher: Oxford University Press, USA

ISBN: N.A

Category: Computers

Page: 221

View: 4976

In recent years, several formalisms for program construction have appeared. One such formalism is the type theory developed by Per Martin-Lof. Well suited as a theory for program construction, it makes possible the expression of both specifications and programs within the same formalism. Furthermore, the proof rules can be used to derive a correct program from a specification as well as to verify that a given program has a certain property. This book contains a thorough introduction to type theory, with information on polymorphic sets, subsets, monomorphic sets, and a full set of helpful examples.
Posted in Computers

## Kategorien und Funktoren

Author: Bodo Pareigis

Publisher: N.A

ISBN: N.A

Category: Categories (Mathematics)

Page: 192

View: 1590

Posted in Categories (Mathematics)

## Logik für Informatiker

Author: Uwe Schöning

ISBN: 9783827410054

Category: Computers

Page: 200

View: 9022

Das Buch macht den Leser mit den wesentlichen Teilgebieten der formalen Logik vertraut, die Bestandteil der Ausbildung in Theoretischer Informatik sind. Die Darstellung orientiert sich an den Bedürfnissen von Informatikstudierenden. Insbesondere werden viele mehr auf das Prinzipielle ausgerichtete Resultate der formalen Logik unter einem algorithmischen Gesichtspunkt behandelt. Diese Vorgehensweise erleichtert entscheidend den Zugang zu dem abstrakten Themengebiet. Prof. Schöning gelingt eine kompakte und verständliche Darstellung der Aussagen- und Prädikatenlogik, bei der die benötigten Begriffe präzise eingeführt und durch Beispiele veranschaulicht werden. Darauf beruhend werden Anwendungen der Logik in der Informatik, wie z. B. Resolution, Automatisches Beweisen und Logik-Programmierung behandelt. Zahlreiche Übungsaufgaben mit ausführlichen Lösungshinweisen erleichtern die Vertiefung des Lernstoffes.
Posted in Computers

## Interactive Theorem Proving and Program Development

Coq’Art: The Calculus of Inductive Constructions

Author: Yves Bertot,Pierre Castéran

Publisher: Springer Science & Business Media

ISBN: 366207964X

Category: Mathematics

Page: 472

View: 7811

A practical introduction to the development of proofs and certified programs using Coq. An invaluable tool for researchers, students, and engineers interested in formal methods and the development of zero-fault software.
Posted in Mathematics

## Lectures on the Curry-Howard Isomorphism

Author: Morten Heine Sørensen,Pawel Urzyczyn

Publisher: Elsevier

ISBN: 9780080478920

Category: Mathematics

Page: 456

View: 8290

The Curry-Howard isomorphism states an amazing correspondence between systems of formal logic as encountered in proof theory and computational calculi as found in type theory. For instance, minimal propositional logic corresponds to simply typed lambda-calculus, first-order logic corresponds to dependent types, second-order logic corresponds to polymorphic types, sequent calculus is related to explicit substitution, etc. The isomorphism has many aspects, even at the syntactic level: formulas correspond to types, proofs correspond to terms, provability corresponds to inhabitation, proof normalization corresponds to term reduction, etc. But there is more to the isomorphism than this. For instance, it is an old idea---due to Brouwer, Kolmogorov, and Heyting---that a constructive proof of an implication is a procedure that transforms proofs of the antecedent into proofs of the succedent; the Curry-Howard isomorphism gives syntactic representations of such procedures. The Curry-Howard isomorphism also provides theoretical foundations for many modern proof-assistant systems (e.g. Coq). This book give an introduction to parts of proof theory and related aspects of type theory relevant for the Curry-Howard isomorphism. It can serve as an introduction to any or both of typed lambda-calculus and intuitionistic logic. Key features - The Curry-Howard Isomorphism treated as common theme - Reader-friendly introduction to two complementary subjects: Lambda-calculus and constructive logics - Thorough study of the connection between calculi and logics - Elaborate study of classical logics and control operators - Account of dialogue games for classical and intuitionistic logic - Theoretical foundations of computer-assisted reasoning · The Curry-Howard Isomorphism treated as the common theme. · Reader-friendly introduction to two complementary subjects: lambda-calculus and constructive logics · Thorough study of the connection between calculi and logics. · Elaborate study of classical logics and control operators. · Account of dialogue games for classical and intuitionistic logic. · Theoretical foundations of computer-assisted reasoning
Posted in Mathematics

## Das BUCH der Beweise

Author: Martin Aigner,Günter M. Ziegler

Publisher: Springer-Verlag

ISBN: 3662577674

Category: Mathematics

Page: 360

View: 8699

Diese fünfte deutsche Auflage enthält ein ganz neues Kapitel über van der Waerdens Permanenten-Vermutung, sowie weitere neue, originelle und elegante Beweise in anderen Kapiteln. Aus den Rezensionen: “... es ist fast unmöglich, ein Mathematikbuch zu schreiben, das von jedermann gelesen und genossen werden kann, aber Aigner und Ziegler gelingt diese Meisterleistung in virtuosem Stil. [...] Dieses Buch erweist der Mathematik einen unschätzbaren Dienst, indem es Nicht-Mathematikern vorführt, was Mathematiker meinen, wenn sie über Schönheit sprechen.” Aus der Laudatio für den “Steele Prize for Mathematical Exposition” 2018 "Was hier vorliegt ist eine Sammlung von Beweisen, die in das von Paul Erdös immer wieder zitierte BUCH gehören, das vom lieben (?) Gott verwahrt wird und das die perfekten Beweise aller mathematischen Sätze enthält. Manchmal lässt der Herrgott auch einige von uns Sterblichen in das BUCH blicken, und die so resultierenden Geistesblitze erhellen den Mathematikeralltag mit eleganten Argumenten, überraschenden Zusammenhängen und unerwarteten Volten." www.mathematik.de, Mai 2002 "Eine einzigartige Sammlung eleganter mathematischer Beweise nach der Idee von Paul Erdös, verständlich geschrieben von exzellenten Mathematikern. Dieses Buch gibt anregende Lösungen mit Aha-Effekt, auch für Nicht-Mathematiker." www.vismath.de "Ein prächtiges, äußerst sorgfältig und liebevoll gestaltetes Buch! Erdös hatte die Idee DES BUCHES, in dem Gott die perfekten Beweise mathematischer Sätze eingeschrieben hat. Das hier gedruckte Buch will eine "very modest approximation" an dieses BUCH sein.... Das Buch von Aigner und Ziegler ist gelungen ..." Mathematische Semesterberichte, November 1999 "Wer (wie ich) bislang vergeblich versucht hat, einen Blick ins BUCH zu werfen, wird begierig in Aigners und Zieglers BUCH der Beweise schmökern." www.mathematik.de, Mai 2002
Posted in Mathematics

## Categories for Types

Author: Roy L. Crole

Publisher: Cambridge University Press

ISBN: 9780521457019

Category: Computers

Page: 335

View: 4261

This textbook explains the basic principles of categorical type theory and the techniques used to derive categorical semantics for specific type theories. It introduces the reader to ordered set theory, lattices and domains, and this material provides plenty of examples for an introduction to category theory, which covers categories, functors, natural transformations, the Yoneda lemma, cartesian closed categories, limits, adjunctions and indexed categories. Four kinds of formal system are considered in detail, namely algebraic, functional, polymorphic functional, and higher order polymorphic functional type theory. For each of these the categorical semantics are derived and results about the type systems are proved categorically. Issues of soundness and completeness are also considered. Aimed at advanced undergraduates and beginning graduates, this book will be of interest to theoretical computer scientists, logicians and mathematicians specializing in category theory.
Posted in Computers

## Naive Mengenlehre

Author: Paul R. Halmos

Publisher: Vandenhoeck & Ruprecht

ISBN: 9783525405277

Category: Arithmetic

Page: 132

View: 7682

Posted in Arithmetic

## The Formal Semantics of Programming Languages

An Introduction

Author: Glynn Winskel

Publisher: MIT Press

ISBN: 9780262731034

Category: Computers

Page: 361

View: 6801

The Formal Semantics of Programming Languages provides the basic mathematical techniques necessary for those who are beginning a study of the semantics and logics of programming languages. These techniques will allow students to invent, formalize, and justify rules with which to reason about a variety of programming languages. Although the treatment is elementary, several of the topics covered are drawn from recent research, including the vital area of concurency. The book contains many exercises ranging from simple to miniprojects.Starting with basic set theory, structural operational semantics is introduced as a way to define the meaning of programming languages along with associated proof techniques. Denotational and axiomatic semantics are illustrated on a simple language of while-programs, and fall proofs are given of the equivalence of the operational and denotational semantics and soundness and relative completeness of the axiomatic semantics. A proof of Godel's incompleteness theorem, which emphasizes the impossibility of achieving a fully complete axiomatic semantics, is included. It is supported by an appendix providing an introduction to the theory of computability based on while-programs.Following a presentation of domain theory, the semantics and methods of proof for several functional languages are treated. The simplest language is that of recursion equations with both call-by-value and call-by-name evaluation. This work is extended to lan guages with higher and recursive types, including a treatment of the eager and lazy lambda-calculi. Throughout, the relationship between denotational and operational semantics is stressed, and the proofs of the correspondence between the operation and denotational semantics are provided. The treatment of recursive types - one of the more advanced parts of the book - relies on the use of information systems to represent domains. The book concludes with a chapter on parallel programming languages, accompanied by a discussion of methods for specifying and verifying nondeterministic and parallel programs.
Posted in Computers

## Was sind und was sollen die Zahlen?

Author: Richard Dedekind

Publisher: Springer-Verlag

ISBN: 3663027880

Category: Mathematics

Page: 47

View: 4421

Posted in Mathematics

## A Modern Perspective on Type Theory

From its Origins until Today

Author: F.D. Kamareddine,T. Laan,Rob Nederpelt

Publisher: Springer Science & Business Media

ISBN: 1402023359

Category: Mathematics

Page: 360

View: 3141

This book provides an overview of type theory. The first part of the book is historical, yet at the same time, places historical systems in the modern setting. The second part deals with modern type theory as it developed since the 1940s, and with the role of propositions as types (or proofs as terms. The third part proposes new systems that bring more advantages together.
Posted in Mathematics