Think Bayes

Author: Allen Downey

Publisher: "O'Reilly Media, Inc."

ISBN: 1491945443

Category: Computers

Page: 210

View: 8789

If you know how to program with Python and also know a little about probability, you’re ready to tackle Bayesian statistics. With this book, you'll learn how to solve statistical problems with Python code instead of mathematical notation, and use discrete probability distributions instead of continuous mathematics. Once you get the math out of the way, the Bayesian fundamentals will become clearer, and you’ll begin to apply these techniques to real-world problems. Bayesian statistical methods are becoming more common and more important, but not many resources are available to help beginners. Based on undergraduate classes taught by author Allen Downey, this book’s computational approach helps you get a solid start. Use your existing programming skills to learn and understand Bayesian statistics Work with problems involving estimation, prediction, decision analysis, evidence, and hypothesis testing Get started with simple examples, using coins, M&Ms, Dungeons & Dragons dice, paintball, and hockey Learn computational methods for solving real-world problems, such as interpreting SAT scores, simulating kidney tumors, and modeling the human microbiome.
Posted in Computers

Statistik-Workshop für Programmierer

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 1927

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.
Posted in Computers

Programmieren lernen mit Python

Author: Allen B. Downey

Publisher: O'Reilly Media

ISBN: 3955618080

Category: Computers

Page: 320

View: 5649

Python ist eine moderne, interpretierte, interaktive und objektorientierte Skriptsprache, vielseitig einsetzbar und sehr beliebt. Mit mathematischen Vorkenntnissen ist Python leicht erlernbar und daher die ideale Sprache für den Einstieg in die Welt des Programmierens. Das Buch führt Sie Schritt für Schritt durch die Sprache, beginnend mit grundlegenden Programmierkonzepten, über Funktionen, Syntax und Semantik, Rekursion und Datenstrukturen bis hin zum objektorientierten Design. Zur aktualisierten Auflage: Diese Auflage behandelt Python 3, geht dabei aber auch auf Unterschiede zu Python 2 ein. Außerdem wurde das Buch um die Themen Unicode, List und Dictionary Comprehensions, den Mengen-Typ Set, die String-Format-Methode und print als Funktion ergänzt. Jenseits reiner Theorie: Jedes Kapitel enthält passende Übungen und Fallstudien, kurze Verständnistests und kleinere Projekte, an denen Sie die neu erlernten Programmierkonzepte gleich ausprobieren und festigen können. Auf diese Weise können Sie das Gelernte direkt anwenden und die jeweiligen Programmierkonzepte nachvollziehen. Lernen Sie Debugging-Techniken kennen: Am Ende jedes Kapitels finden Sie einen Abschnitt zum Thema Debugging, der Techniken zum Aufspüren und Vermeiden von Bugs sowie Warnungen vor entsprechenden Stolpersteinen in Python enthält.
Posted in Computers

Die Berechnung der Zukunft

Warum die meisten Prognosen falsch sind und manche trotzdem zutreffen - Der New York Times Bestseller

Author: Nate Silver

Publisher: Heyne Verlag

ISBN: 3641112702

Category: Business & Economics

Page: 656

View: 7848

Zuverlässige Vorhersagen sind doch möglich! Nate Silver ist der heimliche Gewinner der amerikanischen Präsidentschaftswahlen 2012: ein begnadeter Statistiker, als »Prognose-Popstar« und »Wundernerd« weltberühmt geworden. Er hat die Wahlergebnisse aller 50 amerikanischen Bundesstaaten absolut exakt vorausgesagt – doch damit nicht genug: Jetzt zeigt Nate Silver, wie seine Prognosen in Zukunft Terroranschläge, Umweltkatastrophen und Finanzkrisen verhindern sollen. Gelingt ihm die Abschaffung des Zufalls? Warum werden Wettervorhersagen immer besser, während die Terrorattacken vom 11.09.2001 niemand kommen sah? Warum erkennen Ökonomen eine globale Finanzkrise nicht einmal dann, wenn diese bereits begonnen hat? Das Problem ist nicht der Mangel an Informationen, sondern dass wir die verfügbaren Daten nicht richtig deuten. Zuverlässige Prognosen aber würden uns helfen, Zufälle und Ungewissheiten abzuwehren und unser Schicksal selbst zu bestimmen. Nate Silver zeigt, dass und wie das geht. Erstmals wendet er seine Wahrscheinlichkeitsrechnung nicht nur auf Wahlprognosen an, sondern auf die großen Probleme unserer Zeit: die Finanzmärkte, Ratingagenturen, Epidemien, Erdbeben, den Klimawandel, den Terrorismus. In all diesen Fällen gibt es zahlreiche Prognosen von Experten, die er überprüft – und erklärt, warum sie meist falsch sind. Gleichzeitig schildert er, wie es gelingen kann, im Rauschen der Daten die wesentlichen Informationen herauszufiltern. Ein unterhaltsamer und spannender Augenöffner!
Posted in Business & Economics

Einführung in Perl

Author: Randal L. Schwartz,Tom Phoenix,Brian D. Foy

Publisher: O'Reilly Germany

ISBN: 3897218879

Category: Perl (Computer program language)

Page: 364

View: 5171

Posted in Perl (Computer program language)

Think Bayes

プログラマのためのベイズ統計入門

Author: アレン・B. ダウニー

Publisher: N.A

ISBN: 9784873116945

Category:

Page: 213

View: 1780

サンプルコードを動かして統計の直観的な理解を促した『Think Stats―プログラマのための統計入門』の著者によるベイズ統計・ベイス推論の解説書。数学的な観点での記述は最小限にとどめ、実例を多く使って実用的観点からベイズ手法を解説。Pythonで書かれたサンプルコードを使って実際に手を動かしながらベイズ統計を学ぶことができる。
Posted in

Wahrscheinlichkeitsrechnung fÃ1⁄4r Dummies

Author: Deborah J. Rumsey

Publisher: John Wiley & Sons

ISBN: 3527805494

Category: Mathematics

Page: 374

View: 9738

Die Wahrscheinlichkeitsrechnung wird in der Schule oft nur beilï¿1⁄2ufig behandelt, dabei handelt es sich um ein besonders spannendes und alltagstaugliches Teilgebiet der Mathematik. Fï¿1⁄2r alle, die ï¿1⁄2ber dieses Thema noch etwas mehr erfahren wollen oder mï¿1⁄2ssen, erklï¿1⁄2rt Deborah Rumsey verstï¿1⁄2ndlich und mit Humor, was sie unbedingt wissen sollten. Egal ob Kontingenztabelle, zentraler Grenzwertsatz, Stichproben-, Binomial- oder Poissonverteilung, in diesem Buch lernen Sie, was es ist und wie Sie es anwenden. Zu jedem Kapitel finden Sie online eine ï¿1⁄2bungsaufgabe samt Lï¿1⁄2sung, um das Gelernte zu festigen. Auch Tipps zu praktischen Anwendungen - ob bei der Arbeit oder am Pokertisch - kommen nicht zu kurz. So finden Sie in diesem Buch alles, was Sie ï¿1⁄2ber Wahrscheinlichkeitsrechnung unbedingt wissen sollten.
Posted in Mathematics

Think Complexity

Complexity Science and Computational Modeling

Author: Allen Downey

Publisher: "O'Reilly Media, Inc."

ISBN: 1492040150

Category: Computers

Page: 200

View: 8564

Complexity science uses computation to explore the physical and social sciences. In Think Complexity, you’ll use graphs, cellular automata, and agent-based models to study topics in physics, biology, and economics. Whether you’re an intermediate-level Python programmer or a student of computational modeling, you’ll delve into examples of complex systems through a series of worked examples, exercises, case studies, and easy-to-understand explanations. In this updated second edition, you will: Work with NumPy arrays and SciPy methods, including basic signal processing and Fast Fourier Transform Study abstract models of complex physical systems, including power laws, fractals and pink noise, and Turing machines Get Jupyter notebooks filled with starter code and solutions to help you re-implement and extend original experiments in complexity; and models of computation like Turmites, Turing machines, and cellular automata Explore the philosophy of science, including the nature of scientific laws, theory choice, and realism and instrumentalism Ideal as a text for a course on computational modeling in Python, Think Complexity also helps self-learners gain valuable experience with topics and ideas they might not encounter otherwise.
Posted in Computers

Scala for Machine Learning

Data processing, ML algorithms, smart analytics, and more

Author: Patrick R. Nicolas

Publisher: Packt Publishing Ltd

ISBN: 178712620X

Category: Computers

Page: 740

View: 7689

Leverage Scala and Machine Learning to study and construct systems that can learn from data About This Book Explore a broad variety of data processing, machine learning, and genetic algorithms through diagrams, mathematical formulation, and updated source code in Scala Take your expertise in Scala programming to the next level by creating and customizing AI applications Experiment with different techniques and evaluate their benefits and limitations using real-world applications in a tutorial style Who This Book Is For If you're a data scientist or a data analyst with a fundamental knowledge of Scala who wants to learn and implement various Machine learning techniques, this book is for you. All you need is a good understanding of the Scala programming language, a basic knowledge of statistics, a keen interest in Big Data processing, and this book! What You Will Learn Build dynamic workflows for scientific computing Leverage open source libraries to extract patterns from time series Write your own classification, clustering, or evolutionary algorithm Perform relative performance tuning and evaluation of Spark Master probabilistic models for sequential data Experiment with advanced techniques such as regularization and kernelization Dive into neural networks and some deep learning architecture Apply some basic multiarm-bandit algorithms Solve big data problems with Scala parallel collections, Akka actors, and Apache Spark clusters Apply key learning strategies to a technical analysis of financial markets In Detail The discovery of information through data clustering and classification is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, engineering design, logistics, manufacturing, and trading strategies, to detection of genetic anomalies. The book is your one stop guide that introduces you to the functional capabilities of the Scala programming language that are critical to the creation of machine learning algorithms such as dependency injection and implicits. You start by learning data preprocessing and filtering techniques. Following this, you'll move on to unsupervised learning techniques such as clustering and dimension reduction, followed by probabilistic graphical models such as Naive Bayes, hidden Markov models and Monte Carlo inference. Further, it covers the discriminative algorithms such as linear, logistic regression with regularization, kernelization, support vector machines, neural networks, and deep learning. You'll move on to evolutionary computing, multibandit algorithms, and reinforcement learning. Finally, the book includes a comprehensive overview of parallel computing in Scala and Akka followed by a description of Apache Spark and its ML library. With updated codes based on the latest version of Scala and comprehensive examples, this book will ensure that you have more than just a solid fundamental knowledge in machine learning with Scala. Style and approach This book is designed as a tutorial with hands-on exercises using technical analysis of financial markets and corporate data. The approach of each chapter is such that it allows you to understand key concepts easily.
Posted in Computers

Bayes Theorem Examples

Author: Scott Hartshorn

Publisher: Lulu Press, Inc

ISBN: 1329854128

Category: Education

Page: N.A

View: 6779

Bayes theorem describes the probability of an event based on other information that might be relevant. Essentially, you are estimating a probability, but then updating that estimate based on other things that you know. This book is designed to give you an intuitive understanding of how to use Bayes Theorem. It starts with the definition of what Bayes Theorem is, but the focus of the book is on providing examples that you can follow and duplicate. Most of the examples are calculated in Excel, which is useful for updating probability if you have dozens or hundreds of data points to roll in.
Posted in Education

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython

Author: Wes McKinney

Publisher: O'Reilly

ISBN: 3960102143

Category: Computers

Page: 542

View: 8732

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.
Posted in Computers

Reports of Cases in Chancery

Argued and Determined in the Rolls Court During the Time of Lord Langdale, Master of the Rolls

Author: Charles Beavan,Henry Bickersteth Baron Langdale,John Romilly Baron Romilly,John Romilly Romilly (1st Baron),Chaloner William Chute

Publisher: N.A

ISBN: N.A

Category: Law reports, digests, etc

Page: N.A

View: 9780

Posted in Law reports, digests, etc

Think Data Structures

Algorithms and Information Retrieval in Java

Author: Allen B Downey

Publisher: "O'Reilly Media, Inc."

ISBN: 1491972343

Category:

Page: N.A

View: 6278

If you're a student studying computer science or a software developer preparing for technical interviews, this practical book will help you learn and review some of the most important ideas in software engineering--data structures and algorithms--in a way that's clearer, more concise, and more engaging than other materials. By emphasizing practical knowledge and skills over theory, author Allen Downey shows you how to use data structures to implement efficient algorithms, and then analyze and measure their performance. You'll explore the important classes in the Java collections framework (JCF), how they're implemented, and how they're expected to perform. Each chapter presents hands-on exercises supported by test code online. Use data structures such as lists and maps, and understand how they work Build an application that reads Wikipedia pages, parses the contents, and navigates the resulting data tree Analyze code to predict how fast it will run and how much memory it will require Write classes that implement the Map interface, using a hash table and binary search tree Build a simple web search engine with a crawler, an indexer that stores web page contents, and a retriever that returns user query results Other books by Allen Downey include Think Java, Think Python, Think Stats, and Think Bayes.
Posted in

Think DSP

Digital Signal Processing in Python

Author: Allen B. Downey

Publisher: "O'Reilly Media, Inc."

ISBN: 149193851X

Category: Technology & Engineering

Page: 168

View: 5978

If you understand basic mathematics and know how to program with Python, you’re ready to dive into signal processing. While most resources start with theory to teach this complex subject, this practical book introduces techniques by showing you how they’re applied in the real world. In the first chapter alone, you’ll be able to decompose a sound into its harmonics, modify the harmonics, and generate new sounds. Author Allen Downey explains techniques such as spectral decomposition, filtering, convolution, and the Fast Fourier Transform. This book also provides exercises and code examples to help you understand the material. You’ll explore: Periodic signals and their spectrums Harmonic structure of simple waveforms Chirps and other sounds whose spectrum changes over time Noise signals and natural sources of noise The autocorrelation function for estimating pitch The discrete cosine transform (DCT) for compression The Fast Fourier Transform for spectral analysis Relating operations in time to filters in the frequency domain Linear time-invariant (LTI) system theory Amplitude modulation (AM) used in radio Other books in this series include Think Stats and Think Bayes, also by Allen Downey.
Posted in Technology & Engineering

Neuronale Netze selbst programmieren

Ein verständlicher Einstieg mit Python

Author: Tariq Rashid

Publisher: O'Reilly

ISBN: 3960101031

Category: Computers

Page: 232

View: 4900

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.
Posted in Computers

Bayesian Thinking, Modeling and Computation

Author: N.A

Publisher: Elsevier

ISBN: 9780080461175

Category: Mathematics

Page: 1062

View: 2903

This volume describes how to develop Bayesian thinking, modelling and computation both from philosophical, methodological and application point of view. It further describes parametric and nonparametric Bayesian methods for modelling and how to use modern computational methods to summarize inferences using simulation. The book covers wide range of topics including objective and subjective Bayesian inferences with a variety of applications in modelling categorical, survival, spatial, spatiotemporal, Epidemiological, software reliability, small area and micro array data. The book concludes with a chapter on how to teach Bayesian thoughts to nonstatisticians. Critical thinking on causal effects Objective Bayesian philosophy Nonparametric Bayesian methodology Simulation based computing techniques Bioinformatics and Biostatistics
Posted in Mathematics

Hurricane Climatology

A Modern Statistical Guide Using R

Author: James B. Elsner,Thomas H. Jagger

Publisher: Oxford University Press

ISBN: 0199324069

Category: Science

Page: 390

View: 4174

Hurricanes are nature's most destructive storms and they are becoming more powerful as the globe warms. Hurricane Climatology explains how to analyze and model hurricane data to better understand and predict present and future hurricane activity. It uses the open-source and now widely used R software for statistical computing to create a tutorial-style manual for independent study, review, and reference. The text is written around the code that when copied will reproduce the graphs, tables, and maps. The approach is different from other books that use R. It focuses on a single topic and explains how to make use of R to better understand the topic. The book is organized into two parts, the first of which provides material on software, statistics, and data. The second part presents methods and models used in hurricane climate research.
Posted in Science

Routineaufgaben mit Python automatisieren

Praktische Programmierlösungen für Einsteiger

Author: Al Sweigart

Publisher: dpunkt.verlag

ISBN: 3864919932

Category: Computers

Page: 576

View: 1928

Wenn Sie jemals Stunden damit verbracht haben, Dateien umzubenennen oder Hunderte von Tabelleneinträgen zu aktualisieren, dann wissen Sie, wie stumpfsinnig manche Tätigkeiten sein können. Wie wäre es, den Computer dazu zu bringen, diese Arbeiten zu übernehmen? In diesem Buch lernen Sie, wie Sie mit Python Aufgaben in Sekundenschnelle erledigen können, die sonst viel Zeit in Anspruch nehmen würden. Programmiererfahrung brauchen Sie dazu nicht: Wenn Sie einmal die Grundlagen gemeistert haben, werden Sie Python-Programme schreiben, die automatisch alle möglichen praktischen Aufgaben für Sie abarbeiten: • eine oder eine Vielzahl von Dateien nach Texten durchsuchen • Dateien und Ordner erzeugen, aktualisieren, verschieben und umbenennen • das Web durchsuchen und Inhalte herunterladen • Excel-Dateien aktualisieren und formatieren • PDF-Dateien teilen, zusammenfügen, mit Wasserzeichen versehen und verschlüsseln • Erinnerungsmails und Textnachrichten verschicken • Online-Formulare ausfüllen Schritt-für-Schritt-Anleitungen führen Sie durch jedes Programm und Übungsaufgaben am Ende jedes Kapitels fordern Sie dazu auf, die Programme zu verbessern und Ihre Fähigkeiten auf ähnliche Problemstellungen zu richten. Verschwenden Sie nicht Ihre Zeit mit Aufgaben, die auch ein gut dressierter Affe erledigen könnte. Bringen Sie Ihren Computer dazu, die langweilige Arbeit zu machen!
Posted in Computers

Think Like a Programmer - Deutsche Ausgabe

Typische Programmieraufgaben kreativ lösen am Beispiel von C++

Author: V. Anton Spraul

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3826692780

Category: Computers

Page: 304

View: 5953

Typische Programmieraufgaben kreativ lösen am Beispiel von C++ Von der Aufgabe zur Lösung – so gehen Sie vor Probleme analysieren und schrittweise bearbeiten Systematisches Vorgehen lernen und anwenden Aus dem Inhalt: Strategien zur Problemlösung Eingabeverarbeitung Statusverfolgung Arrays Zeiger und dynamische Speicherverwaltung Klassen Rekursion Wiederverwendung von Code Rekursive und iterative Programmierung Denken wie ein Programmierer Die Herausforderung beim Programmieren besteht nicht im Erlernen der Syntax einer bestimmten Sprache, sondern in der Fähigkeit, auf kreative Art Probleme zu lösen. In diesem einzigartigen Buch widmet sich der Autor V. Anton Spraul genau jenen Fähigkeiten, die in normalen Lehrbüchern eher nicht behandelt werden: die Fähigkeit, wie ein Programmierer zu denken und Aufgaben zu lösen. In den einzelnen Kapiteln behandelt er jeweils verschiedene Programmierkonzepte wie beispielsweise Klassen, Zeiger und Rekursion, und fordert den Leser mit erweiterbaren Übungen zur praktischen Anwendung des Gelernten auf. Sie lernen unter anderem: Probleme in diskrete Einzelteile zerlegen, die sich leichter lösen lassen Funktionen, Klassen und Bibliotheken möglichst effizient nutzen und wiederholt verwenden die perfekte Datenstruktur für eine Aufgabenstellung auswählen anspruchsvollere Programmiertechniken wie Rekursion und dynamischen Speicher einsetzen Ihre Gendanken ordnen und Strategien entwickeln, um bestimmte Problemkategorien in Angriff zu nehmen Die Beispiele im Buch werden mit C++ gelöst, die dargestellten kreativen Problemlösungskonzepte gehen aber weit über die einzelnen Programmiersprachen und oft sogar über den Bereich der Informatik hinaus. Denn wie die fähigsten Programmierer wissen, handelt es sich beim Schreiben herausragender Quelltexte um kreative Kunst und der erste Schritt auf dem Weg zum eigenen Meisterwerk besteht darin, wie ein Programmierer zu denken. Über den Autor: V. Anton Spraul hat über 15 Jahre lang Vorlesungen über die Grundlagen der Programmierung und Informatik gehalten. In diesem Buch fasst er die von ihm dabei perfektionierten Verfahren zusammen. Er ist auch Autor von »Computer Science Made Simple«.
Posted in Computers