Author: Fritz Schwarz

Publisher: CRC Press

ISBN: 9781584888901

Category: Mathematics

Page: 448

View: 9018

Skip to content
#
Search Results for: theory-of-ordinary-differential-equations-pure-applied-mathematics

## Algorithmic Lie Theory for Solving Ordinary Differential Equations

Despite the fact that Sophus Lie's theory was virtually the only systematic method for solving nonlinear ordinary differential equations (ODEs), it was rarely used for practical problems because of the massive amount of calculations involved. But with the advent of computer algebra programs, it became possible to apply Lie theory to concrete problems. Taking this approach, Algorithmic Lie Theory for Solving Ordinary Differential Equations serves as a valuable introduction for solving differential equations using Lie's theory and related results. After an introductory chapter, the book provides the mathematical foundation of linear differential equations, covering Loewy's theory and Janet bases. The following chapters present results from the theory of continuous groups of a 2-D manifold and discuss the close relation between Lie's symmetry analysis and the equivalence problem. The core chapters of the book identify the symmetry classes to which quasilinear equations of order two or three belong and transform these equations to canonical form. The final chapters solve the canonical equations and produce the general solutions whenever possible as well as provide concluding remarks. The appendices contain solutions to selected exercises, useful formulae, properties of ideals of monomials, Loewy decompositions, symmetries for equations from Kamke's collection, and a brief description of the software system ALLTYPES for solving concrete algebraic problems.
## Theory of ordinary differential equations

## Principles of Differential Equations

An accessible, practical introduction to the principles of differential equations The field of differential equations is a keystone of scientific knowledge today, with broad applications in mathematics, engineering, physics, and other scientific fields. Encompassing both basic concepts and advanced results, Principles of Differential Equations is the definitive, hands-on introduction professionals and students need in order to gain a strong knowledge base applicable to the many different subfields of differential equations and dynamical systems. Nelson Markley includes essential background from analysis and linear algebra, in a unified approach to ordinary differential equations that underscores how key theoretical ingredients interconnect. Opening with basic existence and uniqueness results, Principles of Differential Equations systematically illuminates the theory, progressing through linear systems to stable manifolds and bifurcation theory. Other vital topics covered include: Basic dynamical systems concepts Constant coefficients Stability The Poincaré return map Smooth vector fields As a comprehensive resource with complete proofs and more than 200 exercises, Principles of Differential Equations is the ideal self-study reference for professionals, and an effective introduction and tutorial for students.
## Ordinary Differential Equations

This text, now in its second edition, presents the basic theory of ordinary differential equations and relates the topological theory used in differential equations to advanced applications in chemistry and biology. It provides new motivations for studying extension theorems and existence theorems, supplies real-world examples, gives an early introduction to the use of geometric methods and offers a novel treatment of the Sturm-Liouville theory.
## Ordinary Differential Equations in Theory and Practice

In order to emphasize the relationships and cohesion between analytical and numerical techniques, Ordinary Differential Equations in Theory and Practice presents a comprehensive and integrated treatment of both aspects in combination with the modeling of relevant problem classes. This text is uniquely geared to provide enough insight into qualitative aspects of ordinary differential equations (ODEs) to offer a thorough account of quantitative methods for approximating solutions numerically, and to acquaint the reader with mathematical modeling, where such ODEs often play a significant role. Although originally published in 1995, the text remains timely and useful to a wide audience. It provides a thorough introduction to ODEs, since it treats not only standard aspects such as existence, uniqueness, stability, one-step methods, multistep methods, and singular perturbations, but also chaotic systems, differential-algebraic systems, and boundary value problems.
## Ordinary Differential Equations

Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.
## Differential Equations, Dynamical Systems, and Linear Algebra

This book is about dynamical aspects of ordinary differential equations and the relations between dynamical systems and certain fields outside pure mathematics. A prominent role is played by the structure theory of linear operators on finite-dimensional vector spaces; the authors have included a self-contained treatment of that subject.
## Partial Integral Operators and Integro-Differential Equations

A self-contained account of integro-differential equations of the Barbashin type and partial integral operators. It presents the basic theory of Barbashin equations in spaces of continuous or measurable functions, including existence, uniqueness, stability and perturbation results. The theory and applications of partial integral operators and linear and nonlinear equations is discussed. Topics range from abstract functional-analytic approaches to specific uses in continuum mechanics and engineering.
## Ordinary Differential Equations

This rigorous treatment prepares readers for the study of differential equations and shows them how to research current literature. It emphasizes nonlinear problems and specific analytical methods. 1969 edition.
## Ordinary Differential Equations in the Complex Domain

Graduate-level text offers full treatments of existence theorems, representation of solutions by series, theory of majorants, dominants and minorants, questions of growth, much more. Includes 675 exercises. Bibliography.
## Ordinary Differential Equations and Stability Theory

Beginning with a general discussion of the linear equation, topics developed include stability theory for autonomous and nonautonomous systems. Two appendices are also provided, and there are problems at the end of each chapter — 55 in all. Unabridged republication of the original (1968) edition. Appendices. Bibliography. Index. 55 problems.
## Numerical Solution of Ordinary Differential Equations

A concise introduction to numerical methodsand the mathematical framework neededto understand their performance Numerical Solution of Ordinary Differential Equations presents a complete and easy-to-follow introduction to classical topics in the numerical solution of ordinary differential equations. The book's approach not only explains the presented mathematics, but also helps readers understand how these numerical methods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringing together and categorizing different types of problems in order to help readers comprehend the applications of ordinary differential equations. In addition, the authors' collective academic experience ensures a coherent and accessible discussion of key topics, including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to test and build their knowledge of the presented methods, and a related Web site features MATLAB® programs that facilitate the exploration of numerical methods in greater depth. Detailed references outline additional literature on both analytical and numerical aspects of ordinary differential equations for further exploration of individual topics. Numerical Solution of Ordinary Differential Equations is an excellent textbook for courses on the numerical solution of differential equations at the upper-undergraduate and beginning graduate levels. It also serves as a valuable reference for researchers in the fields of mathematics and engineering.
## Functional Differential Equations

Features new results and up-to-date advances in modeling and solving differential equations Introducing the various classes of functional differential equations, Functional Differential Equations: Advances and Applications presents the needed tools and topics to study the various classes of functional differential equations and is primarily concerned with the existence, uniqueness, and estimates of solutions to specific problems. The book focuses on the general theory of functional differential equations, provides the requisite mathematical background, and details the qualitative behavior of solutions to functional differential equations. The book addresses problems of stability, particularly for ordinary differential equations in which the theory can provide models for other classes of functional differential equations, and the stability of solutions is useful for the application of results within various fields of science, engineering, and economics. Functional Differential Equations: Advances and Applications also features: • Discussions on the classes of equations that cannot be solved to the highest order derivative, and in turn, addresses existence results and behavior types • Oscillatory motion and solutions that occur in many real-world phenomena as well as in man-made machines • Numerous examples and applications with a specific focus on ordinary differential equations and functional differential equations with finite delay • An appendix that introduces generalized Fourier series and Fourier analysis after periodicity and almost periodicity • An extensive Bibliography with over 550 references that connects the presented concepts to further topical exploration Functional Differential Equations: Advances and Applications is an ideal reference for academics and practitioners in applied mathematics, engineering, economics, and physics. The book is also an appropriate textbook for graduate- and PhD-level courses in applied mathematics, differential and difference equations, differential analysis, and dynamics processes. CONSTANTIN CORDUNEANU, PhD, is Emeritus Professor in the Department of Mathematics at The University of Texas at Arlington, USA. The author of six books and over 200 journal articles, he is currently Associate Editor for seven journals; a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Romanian Academy; and past president of the American Romanian Academy of Arts and Sciences. YIZENG LI, PhD, is Professor in the Department of Mathematics at Tarrant County College, USA. He is a member of the Society for Industrial and Applied Mathematics. MEHRAN MAHDAVI, PhD, is Professor in the Department of Mathematics at Bowie State University, USA. The author of numerous journal articles, he is a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Mathematical Association of America.
## Introduction to Differential Equations

The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponential and trigonometric functions, which plays a central role in the subsequent development of this chapter. Chapter 2 provides a mini-course on linear algebra, giving detailed treatments of linear transformations, determinants and invertibility, eigenvalues and eigenvectors, and generalized eigenvectors. This treatment is more detailed than that in most differential equations texts, and provides a solid foundation for the next two chapters. Chapter 3 studies linear systems of differential equations. It starts with the matrix exponential, melding material from Chapters 1 and 2, and uses this exponential as a key tool in the linear theory. Chapter 4 deals with nonlinear systems of differential equations. This uses all the material developed in the first three chapters and moves it to a deeper level. The chapter includes theoretical studies, such as the fundamental existence and uniqueness theorem, but also has numerous examples, arising from Newtonian physics, mathematical biology, electrical circuits, and geometrical problems. These studies bring in variational methods, a fertile source of nonlinear systems of differential equations. The reader who works through this book will be well prepared for advanced studies in dynamical systems, mathematical physics, and partial differential equations.
## Ordinary Differential Equations

Offers an alternative to the "rote" approach of presenting standard categories of differential equations accompanied by routine problem sets. The exercises presented amplify and provide perspective for the material, often giving readers opportunity for ingenuity. Little or no previous acquaintance with the subject is required to learn usage of techniques for constructing solutions of differential equations in this reprint volume.
## Partial Differential Equations of Applied Mathematics

The only comprehensive guide to modeling, characterizing, and solving partial differential equations This classic text by Erich Zauderer provides a comprehensive account of partial differential equations and their applications. Dr. Zauderer develops mathematical models that give rise to partial differential equations and describes classical and modern solution techniques. With an emphasis on practical applications, he makes liberal use of real-world examples, explores both linear and nonlinear problems, and provides approximate as well as exact solutions. He also describes approximation methods for simplifying complicated solutions and for solving linear and nonlinear problems not readily solved by standard methods. The book begins with a demonstration of how the three basic types of equations (parabolic, hyperbolic, and elliptic) can be derived from random walk models. It continues in a less statistical vein to cover an exceptionally broad range of topics, including stabilities, singularities, transform methods, the use of Green's functions, and perturbation and asymptotic treatments. Features that set Partial Differential Equations of Applied Mathematics, Second Edition above all other texts in the field include: Coverage of random walk problems, discontinuous and singular solutions, and perturbation and asymptotic methods More than 800 practice exercises, many of which are fully worked out Numerous up-to-date examples from engineering and the physical sciences Partial Differential Equations of Applied Mathematics, Second Edition is a superior advanced-undergraduate to graduate-level text for students in engineering, the sciences, and applied mathematics. The title is also a valuable working resource for professionals in these fields. Dr. Zauderer received his doctorate in mathematics from the New York University-Courant Institute. Prior to joining the staff of Polytechnic University, he was a Senior Weitzmann Fellow of the Weitzmann Institute of Science in Rehovot, Israel.
## Ordinary Differential Equations

An easy to understand guide covering key principles of ordinary differential equations and their applications.
## Nonlinear Ordinary Differential Equations

Ordinary differential equations have long been an important area of study because of their wide application in physics, engineering, biology, chemistry, ecology, and economics. Based on a series of lectures given at the Universities of Melbourne and New South Wales in Australia, Nonlinear Ordinary Differential Equations takes the reader from basic elementary notions to the point where the exciting and fascinating developments in the theory of nonlinear differential equations can be understood and appreciated. Each chapter is self-contained, and includes a selection of problems together with some detailed workings within the main text. Nonlinear Ordinary Differential Equations helps develop an understanding of the subtle and sometimes unexpected properties of nonlinear systems and simultaneously introduces practical analytical techniques to analyze nonlinear phenomena. This excellent book gives a structured, systematic, and rigorous development of the basic theory from elementary concepts to a point where readers can utilize ideas in nonlinear differential equations.
## Differential Equations with Applications and Historical Notes, Third Edition

Fads are as common in mathematics as in any other human activity, and it is always difficult to separate the enduring from the ephemeral in the achievements of one’s own time. An unfortunate effect of the predominance of fads is that if a student doesn’t learn about such worthwhile topics as the wave equation, Gauss’s hypergeometric function, the gamma function, and the basic problems of the calculus of variations—among others—as an undergraduate, then he/she is unlikely to do so later. The natural place for an informal acquaintance with such ideas is a leisurely introductory course on differential equations. Specially designed for just such a course, Differential Equations with Applications and Historical Notes takes great pleasure in the journey into the world of differential equations and their wide range of applications. The author—a highly respected educator—advocates a careful approach, using explicit explanation to ensure students fully comprehend the subject matter. With an emphasis on modeling and applications, the long-awaited Third Edition of this classic textbook presents a substantial new section on Gauss’s bell curve and improves coverage of Fourier analysis, numerical methods, and linear algebra. Relating the development of mathematics to human activity—i.e., identifying why and how mathematics is used—the text includes a wealth of unique examples and exercises, as well as the author’s distinctive historical notes, throughout. Provides an ideal text for a one- or two-semester introductory course on differential equations Emphasizes modeling and applications Presents a substantial new section on Gauss’s bell curve Improves coverage of Fourier analysis, numerical methods, and linear algebra Relates the development of mathematics to human activity—i.e., identifying why and how mathematics is used Includes a wealth of unique examples and exercises, as well as the author’s distinctive historical notes, throughout Uses explicit explanation to ensure students fully comprehend the subject matter Outstanding Academic Title of the Year, Choice magazine, American Library Association.
## Applications of Lie Groups to Differential Equations

This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.

Full PDF eBook Download Free

Author: Fritz Schwarz

Publisher: CRC Press

ISBN: 9781584888901

Category: Mathematics

Page: 448

View: 9018

Author: Earl A. Coddington,Norman Levinson

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: 429

View: 6568

Author: Nelson G. Markley

Publisher: John Wiley & Sons

ISBN: 1118031539

Category: Mathematics

Page: 352

View: 2324

*Introduction and Qualitative Theory, Third Edition*

Author: Jane Cronin

Publisher: CRC Press

ISBN: 9780824791896

Category: Mathematics

Page: 392

View: 8636

Author: Robert Mattheij,Jaap Molenaar

Publisher: SIAM

ISBN: 0898715318

Category: Mathematics

Page: 405

View: 6015

*An Elementary Textbook for Students of Mathematics, Engineering, and the Sciences*

Author: Morris Tenenbaum,Harry Pollard

Publisher: Courier Corporation

ISBN: 0486649407

Category: Mathematics

Page: 808

View: 7044

Author: Morris W. Hirsch,Robert L. Devaney,Stephen Smale

Publisher: Academic Press

ISBN: 0080873766

Category: Mathematics

Page: 358

View: 6521

*Pure and Applied Mathematics*

Author: Jurgen Appell,Anatolij Kalitvin,Petr Zabrejko

Publisher: CRC Press

ISBN: 9780824703967

Category: Mathematics

Page: 578

View: 7799

Author: Jack K. Hale

Publisher: Courier Corporation

ISBN: 0486472116

Category: Mathematics

Page: 361

View: 3197

Author: Einar Hille

Publisher: Courier Corporation

ISBN: 9780486696201

Category: Mathematics

Page: 484

View: 4996

*An Introduction*

Author: David A. Sánchez

Publisher: Courier Corporation

ISBN: 0486638286

Category: Mathematics

Page: 164

View: 6943

Author: Kendall Atkinson,Weimin Han,David E. Stewart

Publisher: John Wiley & Sons

ISBN: 1118164520

Category: Mathematics

Page: 272

View: 882

*Advances and Applications*

Author: Constantin Corduneanu,Yizeng Li,Mehran Mahdavi

Publisher: John Wiley & Sons

ISBN: 1119189470

Category: Mathematics

Page: 368

View: 7606

Author: Michael Eugene Taylor

Publisher: American Mathematical Soc.

ISBN: 082185271X

Category: Mathematics

Page: 409

View: 7983

Author: George F. Carrier,Carl E. Pearson

Publisher: SIAM

ISBN: 9781611971293

Category: Differential equations

Page: 220

View: 5322

Author: Erich Zauderer

Publisher: Wiley-Interscience

ISBN: 9780471315162

Category: Mathematics

Page: 894

View: 5124

*Principles and Applications*

Author: A. K. Nandakumaran,P. S. Datti,Raju K. George

Publisher: Cambridge University Press

ISBN: 1108416411

Category: Mathematics

Page: 344

View: 5046

Author: R. Grimshaw

Publisher: Routledge

ISBN: 135142808X

Category: Mathematics

Page: 336

View: 5175

Author: George F. Simmons

Publisher: CRC Press

ISBN: 1498702600

Category: Mathematics

Page: 764

View: 6196

Author: Peter J. Olver

Publisher: Springer Science & Business Media

ISBN: 1468402749

Category: Mathematics

Page: 497

View: 5880