Author: Irving Kaplansky

Publisher: American Mathematical Soc.

ISBN: 0821826948

Category: Mathematics

Page: 140

View: 7261

Skip to content
#
Search Results for: set-theory-and-metric-spaces

## Set Theory and Metric Spaces

This is a book that could profitably be read by many graduate students or by seniors in strong major programs ... has a number of good features. There are many informal comments scattered between the formal development of theorems and these are done in a light and pleasant style. ... There is a complete proof of the equivalence of the axiom of choice, Zorn's Lemma, and well-ordering, as well as a discussion of the use of these concepts. There is also an interesting discussion of the continuum problem ... The presentation of metric spaces before topological spaces ... should be welcomed by most students, since metric spaces are much closer to the ideas of Euclidean spaces with which they are already familiar. --Canadian Mathematical Bulletin Kaplansky has a well-deserved reputation for his expository talents. The selection of topics is excellent. -- Lance Small, UC San Diego This book is based on notes from a course on set theory and metric spaces taught by Edwin Spanier, and also incorporates with his permission numerous exercises from those notes. The volume includes an Appendix that helps bridge the gap between metric and topological spaces, a Selected Bibliography, and an Index.
## Metric Spaces of Fuzzy Sets

The primary aim of the book is to provide a systematic development of the theory of metric spaces of normal, upper semicontinuous fuzzy convex fuzzy sets with compact support sets, mainly on the base space ?n. An additional aim is to sketch selected applications in which these metric space results and methods are essential for a thorough mathematical analysis.This book is distinctly mathematical in its orientation and style, in contrast with many of the other books now available on fuzzy sets, which, although all making use of mathematical formalism to some extent, are essentially motivated by and oriented towards more immediate applications and related practical issues. The reader is assumed to have some previous undergraduate level acquaintance with metric spaces and elementary functional analysis.
## Linear Algebra and Geometry

The author of this text seeks to remedy a common failing in teaching algebra: the neglect of related instruction in geometry. Focusing on inner product spaces, orthogonal similarity, and elements of geometry, this volume is illustrated with an abundance of examples, exercises, and proofs and is suitable for both undergraduate and graduate courses. 1974 edition.
## Metric Spaces

METRIC SPACES is intended for undergraduate students offering a course of metric spaces and post graduate students offering a course of nonlinear analysis or fixed point theory. The first six chapters cover basic concepts of metric spaces, separable spaces, compact spaces, connected spaces and continuity of functions defined on a metric space. Chapter seven is devoted to the metric fixed point theory. Banach contraction theorem and several of its generalizations along with their applications and Caristi's fixed point theorem are also given in this chapter. The introductory set-valued analysis with special emphysis on continuity and fixed point theory of set-valued maps is given in chapter eight. One of the most useful and important results from nonlinear analysis is Ekeland's variational principle. This principle along with several of its equivalent forms, Takahashi's minimization theorem, introduction of theory of equilibrium problems and the equilibrium version of Ekeland's variational principle and several of its equivalent forms are presented in the last chapter. This book will also be useful for researchers working in nonlinear analysis, optimization and theory of equilibrium problems.
## Set theory and metric spaces

## Metric Spaces

The abstract concepts of metric spaces are often perceived as difficult. This book offers a unique approach to the subject which gives readers the advantage of a new perspective on ideas familiar from the analysis of a real line. Rather than passing quickly from the definition of a metric to the more abstract concepts of convergence and continuity, the author takes the concrete notion of distance as far as possible, illustrating the text with examples and naturally arising questions. Attention to detail at this stage is designed to prepare the reader to understand the more abstract ideas with relative ease.
## Introduction to Set Theory and Topology

Introduction to Set Theory and Topology describes the fundamental concepts of set theory and topology as well as its applicability to analysis, geometry, and other branches of mathematics, including algebra and probability theory. Concepts such as inverse limit, lattice, ideal, filter, commutative diagram, quotient-spaces, completely regular spaces, quasicomponents, and cartesian products of topological spaces are considered. This volume consists of 21 chapters organized into two sections and begins with an introduction to set theory, with emphasis on the propositional calculus and its application to propositions each having one of two logical values, 0 and 1. Operations on sets which are analogous to arithmetic operations are also discussed. The chapters that follow focus on the mapping concept, the power of a set, operations on cardinal numbers, order relations, and well ordering. The section on topology explores metric and topological spaces, continuous mappings, cartesian products, and other spaces such as spaces with a countable base, complete spaces, compact spaces, and connected spaces. The concept of dimension, simplexes and their properties, and cuttings of the plane are also analyzed. This book is intended for students and teachers of mathematics.
## An Introduction to Metric Spaces and Fixed Point Theory

Presents up-to-date Banach space results. * Features an extensive bibliography for outside reading. * Provides detailed exercises that elucidate more introductory material.
## Metric Spaces

An introduction to metric spaces for those interested in the applications as well as theory.
## Metric Spaces

Since the last century, the postulational method and an abstract point of view have played a vital role in the development of modern mathematics. The experience gained from the earlier concrete studies of analysis point to the importance of passage to the limit. The basis of this operation is the notion of distance between any two points of the line or the complex plane. The algebraic properties of underlying sets often play no role in the development of analysis; this situation naturally leads to the study of metric spaces. The abstraction not only simplifies and elucidates mathematical ideas that recur in different guises, but also helps eco- mize the intellectual effort involved in learning them. However, such an abstract approach is likely to overlook the special features of particular mathematical developments, especially those not taken into account while forming the larger picture. Hence, the study of particular mathematical developments is hard to overemphasize. The language in which a large body of ideas and results of functional analysis are expressed is that of metric spaces. The books on functional analysis seem to go over the preliminaries of this topic far too quickly. The present authors attempt to provide a leisurely approach to the theory of metric spaces. In order to ensure that the ideas take root gradually but firmly, a large number of examples and counterexamples follow each definition. Also included are several worked examples and exercises. Applications of the theory are spread out over the entire book.
## Probabilistic Metric Spaces

This distinctly nonclassical treatment focuses on developing aspects that differ from the theory of ordinary metric spaces, working directly with probability distribution functions rather than random variables. The two-part treatment begins with an overview that discusses the theory's historical evolution, followed by a development of related mathematical machinery. The presentation defines all needed concepts, states all necessary results, and provides relevant proofs. The second part opens with definitions of probabilistic metric spaces and proceeds to examinations of special classes of probabilistic metric spaces, topologies, and several related structures, such as probabilistic normed and inner-product spaces. Throughout, the authors focus on developing aspects that differ from the theory of ordinary metric spaces, rather than simply transferring known metric space results to a more general setting.
## Metric Spaces and Complex Analysis

## Topics on Analysis in Metric Spaces

This book presents the main mathematical prerequisites for analysis in metric spaces. It covers abstract measure theory, Hausdorff measures, Lipschitz functions, covering theorums, lower semicontinuity of the one-dimensional Hausdorff measure, Sobolev spaces of maps between metric spaces, and Gromov-Hausdorff theory, all developed ina general metric setting. The existence of geodesics (and more generally of minimal Steiner connections) is discussed on general metric spaces and as an application of the Gromov-Hausdorff theory, even in some cases when the ambient space is not locally compact. A brief and very general description of the theory of integration with respect to non-decreasing set functions is presented following the Di Giorgi method of using the 'cavalieri' formula as the definition of the integral. Based on lecture notes from Scuola Normale, this book presents the main mathematical prerequisites for analysis in metric spaces. Supplemented with exercises of varying difficulty it is ideal for a graduate-level short course for applied mathematicians and engineers.
## Fixed Point Theory in Probabilistic Metric Spaces

Fixed point theory in probabilistic metric spaces can be considered as a part of Probabilistic Analysis, which is a very dynamic area of mathematical research. A primary aim of this monograph is to stimulate interest among scientists and students in this fascinating field. The text is self-contained for a reader with a modest knowledge of the metric fixed point theory. Several themes run through this book. The first is the theory of triangular norms (t-norms), which is closely related to fixed point theory in probabilistic metric spaces. Its recent development has had a strong influence upon the fixed point theory in probabilistic metric spaces. In Chapter 1 some basic properties of t-norms are presented and several special classes of t-norms are investigated. Chapter 2 is an overview of some basic definitions and examples from the theory of probabilistic metric spaces. Chapters 3, 4, and 5 deal with some single-valued and multi-valued probabilistic versions of the Banach contraction principle. In Chapter 6, some basic results in locally convex topological vector spaces are used and applied to fixed point theory in vector spaces. Audience: The book will be of value to graduate students, researchers, and applied mathematicians working in nonlinear analysis and probabilistic metric spaces.
## Elements of Metric Spaces

## Real Variables with Basic Metric Space Topology

Designed for a first course in real variables, this text encourages intuitive thinking and features detailed solutions to problems. Topics include complex variables, measure theory, differential equations, functional analysis, probability. 1993 edition.
## Metric Modular Spaces

Aimed toward researchers and graduate students familiar with elements of functional analysis, linear algebra, and general topology; this book contains a general study of modulars, modular spaces, and metric modular spaces. Modulars may be thought of as generalized velocity fields and serve two important purposes: generate metric spaces in a unified manner and provide a weaker convergence, the modular convergence, whose topology is non-metrizable in general. Metric modular spaces are extensions of metric spaces, metric linear spaces, and classical modular linear spaces. The topics covered include the classification of modulars, metrizability of modular spaces, modular transforms and duality between modular spaces, metric and modular topologies. Applications illustrated in this book include: the description of superposition operators acting in modular spaces, the existence of regular selections of set-valued mappings, new interpretations of spaces of Lipschitzian and absolutely continuous mappings, the existence of solutions to ordinary differential equations in Banach spaces with rapidly varying right-hand sides.
## Elementary Theory of Metric Spaces

Science students have to spend much of their time learning how to do laboratory work, even if they intend to become theoretical, rather than experimental, scientists. It is important that they understand how experiments are performed and what the results mean. In science the validity of ideas is checked by experiments. If a new idea does not work in the laboratory, it must be discarded. If it does work, it is accepted, at least tentatively. In science, therefore, laboratory experiments are the touchstones for the acceptance or rejection of results. Mathematics is different. This is not to say that experiments are not part of the subject. Numerical calculations and the examina tion of special and simplified cases are important in leading mathematicians to make conjectures, but the acceptance of a conjecture as a theorem only comes when a proof has been constructed. In other words, proofs are to mathematics as laboratory experiments are to science. Mathematics students must, therefore, learn to know what constitute valid proofs and how to construct them. How is this done? Like everything else, by doing. Mathematics students must try to prove results and then have their work criticized by experienced mathematicians. They must critically examine proofs, both correct and incorrect ones, and develop an appreciation of good style. They must, of course, start with easy proofs and build to more complicated ones.
## Handbook of Set-Theoretic Topology

This Handbook is an introduction to set-theoretic topology for students in the field and for researchers in other areas for whom results in set-theoretic topology may be relevant. The aim of the editors has been to make it as self-contained as possible without repeating material which can easily be found in standard texts. The Handbook contains detailed proofs of core results, and references to the literature for peripheral results where space was insufficient. Included are many open problems of current interest. In general, the articles may be read in any order. In a few cases they occur in pairs, with the first one giving an elementary treatment of a subject and the second one more advanced results. These pairs are: Hodel and Juhász on cardinal functions; Roitman and Abraham-Todorčević on S- and L-spaces; Weiss and Baumgartner on versions of Martin's axiom; and Vaughan and Stephenson on compactness properties.
## Introduction to Abstract Mathematics

Introduction to Abstract Mathematics focuses on the principles, approaches, and operations involved in abstract mathematics, including metric spaces, sets, axiom systems, and open sentences. The book first offers information on logic and set theory, natural numbers, and integers and rational numbers. Discussions focus on rational numbers and ordered fields, ordering, arithmetic, axiom systems and methods of proof, functions of kindred matters, ordered pairs and relations, sets, and statements and open sentences. The text then examines real and complex numbers, metric spaces, and limits. Topics include generalized limits, continuous functions, openness, closedness, and neighborhood systems, definition and basic properties, and construction of R. The publication is a vital reference for mathematicians and students interested in abstract mathematics.

Full PDF eBook Download Free

Author: Irving Kaplansky

Publisher: American Mathematical Soc.

ISBN: 0821826948

Category: Mathematics

Page: 140

View: 7261

*Theory and Applications*

Author: Phil Diamond,Peter E. Kloeden

Publisher: World Scientific

ISBN: 9789810217310

Category: Mathematics

Page: 178

View: 2685

*A Second Course*

Author: Irving Kaplansky

Publisher: Courier Corporation

ISBN: 9780486432335

Category: Mathematics

Page: 143

View: 8566

*Including Fixed Point Theory and Set-valued Maps*

Author: Qamrul Hasan Ansari

Publisher: Alpha Science International Limited

ISBN: 9781842656556

Category: Science

Page: 196

View: 8404

Author: Edwin Henry Spanier

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 8186

Author: Mícheál O'Searcoid

Publisher: Springer Science & Business Media

ISBN: 9781846286278

Category: Mathematics

Page: 304

View: 8311

Author: Kazimierz Kuratowski

Publisher: Elsevier

ISBN: 1483151638

Category: Mathematics

Page: 352

View: 4249

Author: Mohamed A. Khamsi,William A. Kirk

Publisher: John Wiley & Sons

ISBN: 1118031326

Category: Mathematics

Page: 320

View: 2280

*Iteration and Application*

Author: Victor Bryant

Publisher: Cambridge University Press

ISBN: 9780521318976

Category: Mathematics

Page: 104

View: 3076

Author: Satish Shirali,Harkrishan Lal Vasudeva

Publisher: Springer Science & Business Media

ISBN: 9781852339227

Category: Mathematics

Page: 222

View: 4692

Author: B. Schweizer,A. Sklar

Publisher: Courier Corporation

ISBN: 0486143759

Category: Mathematics

Page: 336

View: 9932

Author: Amar Kumar Banerjee

Publisher: New Age International

ISBN: 8122422608

Category:

Page: 208

View: 7500

Author: Luigi Ambrosio,Paolo Tilli

Publisher: Oxford University Press on Demand

ISBN: 9780198529385

Category: Mathematics

Page: 133

View: 9761

Author: O. Hadzic,E. Pap

Publisher: Springer Science & Business Media

ISBN: 9401715602

Category: Mathematics

Page: 273

View: 5576

Author: N.A

Publisher: Academic Publishers

ISBN: 9788189781989

Category: Metric spaces

Page: 204

View: 4697

Author: Robert B. Ash

Publisher: Courier Corporation

ISBN: 0486151492

Category: Mathematics

Page: 224

View: 3689

Author: Vyacheslav Chistyakov

Publisher: Springer

ISBN: 3319252836

Category: Mathematics

Page: 137

View: 6722

*A Course in Constructing Mathematical Proofs*

Author: Robert B. Reisel

Publisher: Springer Science & Business Media

ISBN: 1461381886

Category: Mathematics

Page: 120

View: 6639

Author: K. Kunen,J. Vaughan

Publisher: Elsevier

ISBN: 148329515X

Category: Mathematics

Page: 1282

View: 3263

Author: T. A. Bick

Publisher: Elsevier

ISBN: 1483276597

Category: Mathematics

Page: 232

View: 1985