Parallel Scientific Computing in C++ and MPI

A Seamless Approach to Parallel Algorithms and Their Implementation

Author: George Em Karniadakis,Robert M. Kirby II

Publisher: Cambridge University Press

ISBN: 9780521817547

Category: Computers

Page: 616

View: 9022

Numerical algorithms, modern programming techniques, and parallel computing are often taught serially across different courses and different textbooks. The need to integrate concepts and tools usually comes only in employment or in research - after the courses are concluded - forcing the student to synthesise what is perceived to be three independent subfields into one. This book provides a seamless approach to stimulate the student simultaneously through the eyes of multiple disciplines, leading to enhanced understanding of scientific computing as a whole. The book includes both basic as well as advanced topics and places equal emphasis on the discretization of partial differential equations and on solvers. Some of the advanced topics include wavelets, high-order methods, non-symmetric systems, and parallelization of sparse systems. The material covered is suited to students from engineering, computer science, physics and mathematics.
Posted in Computers

Parallel Scientific Computing in C++ and MPI

A Seamless Approach to Parallel Algorithms and their Implementation

Author: George Em Karniadakis,Robert M. Kirby II

Publisher: Cambridge University Press

ISBN: 110749477X

Category: Computers

Page: 628

View: 5767

Numerical algorithms, modern programming techniques, and parallel computing are often taught serially across different courses and different textbooks. The need to integrate concepts and tools usually comes only in employment or in research - after the courses are concluded - forcing the student to synthesise what is perceived to be three independent subfields into one. This book provides a seamless approach to stimulate the student simultaneously through the eyes of multiple disciplines, leading to enhanced understanding of scientific computing as a whole. The book includes both basic as well as advanced topics and places equal emphasis on the discretization of partial differential equations and on solvers. Some of the advanced topics include wavelets, high-order methods, non-symmetric systems, and parallelization of sparse systems. The material covered is suited to students from engineering, computer science, physics and mathematics.
Posted in Computers

Parallel Scientific Computing in C++ and MPI

A Seamless Approach to Parallel Algorithms and Their Implementation

Author: George Em Karniadakis,Robert M. Kirby II

Publisher: Cambridge University Press

ISBN: 9780521520805

Category: Computers

Page: 616

View: 7643

Accompanying CD-ROM has a software suite containing all the functions and programs discussed.
Posted in Computers

Parallel Scientific Computation

A Structured Approach Using BSP and MPI

Author: Rob H. Bisseling

Publisher: Oxford University Press on Demand

ISBN: 0198529392

Category: Computers

Page: 305

View: 6891

Bisseling explains how to use the bulk synchronous parallel (BSP) model and the freely available BSPlib communication library in parallel algorithm design and parallel programming. An appendix on the message-passing interface (MPI) discusses how to program using the MPI communication library.
Posted in Computers

Guide to Scientific Computing in C++

Author: Joe Pitt-Francis,Jonathan Whiteley

Publisher: Springer Science & Business Media

ISBN: 1447127366

Category: Computers

Page: 250

View: 9055

This easy-to-read textbook/reference presents an essential guide to object-oriented C++ programming for scientific computing. With a practical focus on learning by example, the theory is supported by numerous exercises. Features: provides a specific focus on the application of C++ to scientific computing, including parallel computing using MPI; stresses the importance of a clear programming style to minimize the introduction of errors into code; presents a practical introduction to procedural programming in C++, covering variables, flow of control, input and output, pointers, functions, and reference variables; exhibits the efficacy of classes, highlighting the main features of object-orientation; examines more advanced C++ features, such as templates and exceptions; supplies useful tips and examples throughout the text, together with chapter-ending exercises, and code available to download from Springer.
Posted in Computers

Parallel Programming in C with MPI and OpenMP

Author: Michael Jay Quinn

Publisher: McGraw-Hill Science Engineering

ISBN: 9780072822564

Category: Computers

Page: 529

View: 2984

This volume gives a high-level overview of parallel architectures, including processor arrays, centralized multi-processors, distributed multi-processors, commercial multi-computers and commodity clusters. A six-chapter tutorial introduces 25 MPI functions by developing parallel programs to solve a series of increasingly difficult problems. Each program is taken from problem description through design and analysis to implementation and benchmarking on an actual commodity cluster, providing the reader with a wealth of examples.
Posted in Computers

Parallel Programming with MPI

Author: Peter S. Pacheco

Publisher: Morgan Kaufmann

ISBN: 9781558603394

Category: Computers

Page: 418

View: 8496

Mathematics of Computing -- Parallelism.
Posted in Computers

Parallel Scientific Computing

Author: Frédéric Magoules,Fran?ois-Xavier Roux,Guillaume Houzeaux

Publisher: John Wiley & Sons

ISBN: 1848215819

Category: Computers

Page: 372

View: 9181

"Scientific computing has become an indispensable tool in numerous fields, such as physics, biology, chemistry, finance and engineering. For example, it enables us, thanks to efficient algorithms adapted to current computers and supercomputers, to simulate complex phenomena, without the help of models or experimentations. Some examples are the structural behaviors of civil engineering structures, the sound level in a theater, a fluid flowing around an aircraft or a Formula 1 car, and the hydrodynamics of a racing yacht. This book presents the scientific computing techniques applied to parallel computing for the numerical simulation of large-scale problems ; these problems mainly result from systems modeled by partial differential equations. Computing concepts are tackled via examples. Implementation and programming techniques resulting from the finite element, finite volume and finite difference methods are presented for direct solvers, iterative solvers and domain decomposition methods, along with an introduction to MPI and OpenMP." (source : 4ème de couverture).
Posted in Computers

Parallel Programming Using C++

Author: Greg Wilson,Paul Lu

Publisher: MIT Press

ISBN: 9780262731188

Category: Computers

Page: 758

View: 4461

Foreword by Bjarne Stroustrup Software is generally acknowledged to be the single greatest obstacle preventing mainstream adoption of massively-parallel computing. While sequential applications are routinely ported to platforms ranging from PCs to mainframes, most parallel programs only ever run on one type of machine. One reason for this is that most parallel programming systems have failed to insulate their users from the architectures of the machines on which they have run. Those that have been platform-independent have usually also had poor performance. Many researchers now believe that object-oriented languages may offer a solution. By hiding the architecture-specific constructs required for high performance inside platform-independent abstractions, parallel object-oriented programming systems may be able to combine the speed of massively-parallel computing with the comfort of sequential programming. "Parallel Programming Using C++" describes fifteen parallel programming systems based on C++, the most popular object-oriented language of today. These systems cover the whole spectrum of parallel programming paradigms, from data parallelism through dataflow and distributed shared memory to message-passing control parallelism. For the parallel programming community, a common parallel application is discussed in each chapter, as part of the description of the system itself. By comparing the implementations of the polygon overlay problem in each system, the reader can get a better sense of their expressiveness and functionality for a common problem. For the systems community, the chapters contain a discussion of the implementation of thevarious compilers and runtime systems. In addition to discussing the performance of polygon overlay, several of the contributors also discuss the performance of other, more substantial, applications. For the research community, the contributors discuss the motivations for and philosophy of their systems. As well, many of the chapters include critiques that complete the research arc by pointing out possible future research directions. Finally, for the object-oriented community, there are many examples of how encapsulation, inheritance, and polymorphism can be used to control the complexity of developing, debugging, and tuning parallel software. "Scientific and Engineering Computation series"
Posted in Computers

An Introduction to Parallel Programming

Author: Peter Pacheco

Publisher: Elsevier

ISBN: 9780080921440

Category: Computers

Page: 392

View: 6659

An Introduction to Parallel Programming is the first undergraduate text to directly address compiling and running parallel programs on the new multi-core and cluster architecture. It explains how to design, debug, and evaluate the performance of distributed and shared-memory programs. The author Peter Pacheco uses a tutorial approach to show students how to develop effective parallel programs with MPI, Pthreads, and OpenMP, starting with small programming examples and building progressively to more challenging ones. The text is written for students in undergraduate parallel programming or parallel computing courses designed for the computer science major or as a service course to other departments; professionals with no background in parallel computing. Takes a tutorial approach, starting with small programming examples and building progressively to more challenging examples Focuses on designing, debugging and evaluating the performance of distributed and shared-memory programs Explains how to develop parallel programs using MPI, Pthreads, and OpenMP programming models
Posted in Computers

Using OpenMP

Portable Shared Memory Parallel Programming

Author: Barbara Chapman,Gabriele Jost,Ruud van der Pas

Publisher: MIT Press

ISBN: 0262533022

Category: Computers

Page: 353

View: 3180

Using OpenMP discusses hardware developments, describes where OpenMP is applicable, and compares OpenMP to other programming interfaces for shared and distributed memory parallel architectures. It introduces the individual features of OpenMP, provides many source code examples that demonstrate the use and functionality of the language constructs, and offers tips on writing an efficient OpenMP program. It describes how to use OpenMP in full-scale applications to achieve high performance on large-scale architectures, discussing several case studies in detail, and offers in-depth troubleshooting advice. It explains how OpenMP is translated into explicitly multithreaded code, providing a valuable behind-the-scenes account of OpenMP program performance. Finally, Using OpenMP considers trends likely to influence OpenMP development, offering a glimpse of the possibilities of a future OpenMP 3.0 from the vantage point of the current OpenMP 2.5.
Posted in Computers

Parallel Programming

Concepts and Practice

Author: Bertil Schmidt,Jorge Gonzalez-Dominguez,Christian Hundt,Moritz Schlarb

Publisher: Morgan Kaufmann

ISBN: 0128044861

Category: Computers

Page: 416

View: 9193

Parallel Programming: Concepts and Practice provides an upper level introduction to parallel programming. In addition to covering general parallelism concepts, this text teaches practical programming skills for both shared memory and distributed memory architectures. The authors’ open-source system for automated code evaluation provides easy access to parallel computing resources, making the book particularly suitable for classroom settings. Covers parallel programming approaches for single computer nodes and HPC clusters: OpenMP, multithreading, SIMD vectorization, MPI, UPC++ Contains numerous practical parallel programming exercises Includes access to an automated code evaluation tool that enables students the opportunity to program in a web browser and receive immediate feedback on the result validity of their program Features an example-based teaching of concept to enhance learning outcomes
Posted in Computers

Introduction to High Performance Computing for Scientists and Engineers

Author: Georg Hager,Gerhard Wellein

Publisher: CRC Press

ISBN: 9781439811931

Category: Computers

Page: 356

View: 6411

Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the authors gained a unique perspective on the requirements and attitudes of users as well as manufacturers of parallel computers. The text first introduces the architecture of modern cache-based microprocessors and discusses their inherent performance limitations, before describing general optimization strategies for serial code on cache-based architectures. It next covers shared- and distributed-memory parallel computer architectures and the most relevant network topologies. After discussing parallel computing on a theoretical level, the authors show how to avoid or ameliorate typical performance problems connected with OpenMP. They then present cache-coherent nonuniform memory access (ccNUMA) optimization techniques, examine distributed-memory parallel programming with message passing interface (MPI), and explain how to write efficient MPI code. The final chapter focuses on hybrid programming with MPI and OpenMP. Users of high performance computers often have no idea what factors limit time to solution and whether it makes sense to think about optimization at all. This book facilitates an intuitive understanding of performance limitations without relying on heavy computer science knowledge. It also prepares readers for studying more advanced literature. Read about the authors’ recent honor: Informatics Europe Curriculum Best Practices Award for Parallelism and Concurrency
Posted in Computers

Parallel Programming

for Multicore and Cluster Systems

Author: Thomas Rauber,Gudula Rünger

Publisher: Springer Science & Business Media

ISBN: 3642378013

Category: Computers

Page: 516

View: 7018

Innovations in hardware architecture, like hyper-threading or multicore processors, mean that parallel computing resources are available for inexpensive desktop computers. In only a few years, many standard software products will be based on concepts of parallel programming implemented on such hardware, and the range of applications will be much broader than that of scientific computing, up to now the main application area for parallel computing. Rauber and Rünger take up these recent developments in processor architecture by giving detailed descriptions of parallel programming techniques that are necessary for developing efficient programs for multicore processors as well as for parallel cluster systems and supercomputers. Their book is structured in three main parts, covering all areas of parallel computing: the architecture of parallel systems, parallel programming models and environments, and the implementation of efficient application algorithms. The emphasis lies on parallel programming techniques needed for different architectures. For this second edition, all chapters have been carefully revised. The chapter on architecture of parallel systems has been updated considerably, with a greater emphasis on the architecture of multicore systems and adding new material on the latest developments in computer architecture. Lastly, a completely new chapter on general-purpose GPUs and the corresponding programming techniques has been added. The main goal of the book is to present parallel programming techniques that can be used in many situations for a broad range of application areas and which enable the reader to develop correct and efficient parallel programs. Many examples and exercises are provided to show how to apply the techniques. The book can be used as both a textbook for students and a reference book for professionals. The material presented has been used for courses in parallel programming at different universities for many years.
Posted in Computers

Topics in Parallel and Distributed Computing

Introducing Concurrency in Undergraduate Courses

Author: Sushil K Prasad,Anshul Gupta,Arnold L Rosenberg,Alan Sussman,Charles C Weems

Publisher: Morgan Kaufmann

ISBN: 0128039388

Category: Computers

Page: 360

View: 8775

Topics in Parallel and Distributed Computing provides resources and guidance for those learning PDC as well as those teaching students new to the discipline. The pervasiveness of computing devices containing multicore CPUs and GPUs, including home and office PCs, laptops, and mobile devices, is making even common users dependent on parallel processing. Certainly, it is no longer sufficient for even basic programmers to acquire only the traditional sequential programming skills. The preceding trends point to the need for imparting a broad-based skill set in PDC technology. However, the rapid changes in computing hardware platforms and devices, languages, supporting programming environments, and research advances, poses a challenge both for newcomers and seasoned computer scientists. This edited collection has been developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts into courses throughout computer science curricula. Contributed and developed by the leading minds in parallel computing research and instruction Provides resources and guidance for those learning PDC as well as those teaching students new to the discipline Succinctly addresses a range of parallel and distributed computing topics Pedagogically designed to ensure understanding by experienced engineers and newcomers Developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts
Posted in Computers

High Performance Computing: Technology, Methods and Applications

Author: J.J. Dongarra,L. Grandinetti,J. Kowalik,G.R. Joubert

Publisher: Elsevier

ISBN: 9780080553917

Category: Computers

Page: 426

View: 7235

High Performance Computing is an integrated computing environment for solving large-scale computational demanding problems in science, engineering and business. Newly emerging areas of HPC applications include medical sciences, transportation, financial operations and advanced human-computer interface such as virtual reality. High performance computing includes computer hardware, software, algorithms, programming tools and environments, plus visualization. The book addresses several of these key components of high performance technology and contains descriptions of the state-of-the-art computer architectures, programming and software tools and innovative applications of parallel computers. In addition, the book includes papers on heterogeneous network-based computing systems and scalability of parallel systems. The reader will find information and data relative to the two main thrusts of high performance computing: the absolute computational performance and that of providing the most cost effective and affordable computing for science, industry and business. The book is recommended for technical as well as management oriented individuals.
Posted in Computers

Using MPI

Portable Parallel Programming with the Message-Passing Interface

Author: William Gropp,Ewing Lusk,Anthony Skjellum

Publisher: MIT Press

ISBN: 0262527391

Category: Computers

Page: 336

View: 3817

This book offers a thoroughly updated guide to the MPI (Message-Passing Interface) standard library for writing programs for parallel computers. Since the publication of the previous edition of Using MPI, parallel computing has become mainstream. Today, applications run on computers with millions of processors; multiple processors sharing memory and multicore processors with multiple hardware threads per core are common. The MPI-3 Forum recently brought the MPI standard up to date with respect to developments in hardware capabilities, core language evolution, the needs of applications, and experience gained over the years by vendors, implementers, and users. This third edition of Using MPI reflects these changes in both text and example code. The book takes an informal, tutorial approach, introducing each concept through easy-to-understand examples, including actual code in C and Fortran. Topics include using MPI in simple programs, virtual topologies, MPI datatypes, parallel libraries, and a comparison of MPI with sockets. For the third edition, example code has been brought up to date; applications have been updated; and references reflect the recent attention MPI has received in the literature. A companion volume, Using Advanced MPI, covers more advanced topics, including hybrid programming and coping with large data.
Posted in Computers

Parallel and Distributed Programming Using C++

Author: Cameron Hughes,Tracey Hughes

Publisher: Addison-Wesley Professional

ISBN: 9780131013766

Category: Computers

Page: 691

View: 9823

Provides an up-close look at how to build software that takes advantage of multiprocessor computers. Through an overview of multithreaded programming, this book shows you how to write software components that work together over a network to solve problems and do work. It is useful for programmers, designers, software architects, and researchers.
Posted in Computers

An Introduction to Parallel and Vector Scientific Computation

Author: Ronald W. Shonkwiler,Lew Lefton

Publisher: Cambridge University Press

ISBN: 113945899X

Category: Computers

Page: N.A

View: 7581

In this text, students of applied mathematics, science and engineering are introduced to fundamental ways of thinking about the broad context of parallelism. The authors begin by giving the reader a deeper understanding of the issues through a general examination of timing, data dependencies, and communication. These ideas are implemented with respect to shared memory, parallel and vector processing, and distributed memory cluster computing. Threads, OpenMP, and MPI are covered, along with code examples in Fortran, C, and Java. The principles of parallel computation are applied throughout as the authors cover traditional topics in a first course in scientific computing. Building on the fundamentals of floating point representation and numerical error, a thorough treatment of numerical linear algebra and eigenvector/eigenvalue problems is provided. By studying how these algorithms parallelize, the reader is able to explore parallelism inherent in other computations, such as Monte Carlo methods.
Posted in Computers