New Foundations for Classical Mechanics

Author: D. Hestenes

Publisher: Springer Science & Business Media

ISBN: 0306471221

Category: Science

Page: 706

View: 5797

(revised) This is a textbook on classical mechanics at the intermediate level, but its main purpose is to serve as an introduction to a new mathematical language for physics called geometric algebra. Mechanics is most commonly formulated today in terms of the vector algebra developed by the American physicist J. Willard Gibbs, but for some applications of mechanics the algebra of complex numbers is more efficient than vector algebra, while in other applications matrix algebra works better. Geometric algebra integrates all these algebraic systems into a coherent mathematical language which not only retains the advantages of each special algebra but possesses powerful new capabilities. This book covers the fairly standard material for a course on the mechanics of particles and rigid bodies. However, it will be seen that geometric algebra brings new insights into the treatment of nearly every topic and produces simplifications that move the subject quickly to advanced levels. That has made it possible in this book to carry the treatment of two major topics in mechanics well beyond the level of other textbooks. A few words are in order about the unique treatment of these two topics, namely, rotational dynamics and celestial mechanics.
Posted in Science

New Foundations for Classical Mechanics

Author: David Hestenes

Publisher: Springer Science & Business Media

ISBN: 9780792353027

Category: Language Arts & Disciplines

Page: 703

View: 1058

This book provides an introduction to geometric algebra as a unified language for physics and mathematics. It contains extensive applications to classical mechanics in a textbook format suitable for courses at an intermediate level. The text is supported by more than 200 diagrams to help develop geometrical and physical intuition. Besides covering the standard material for a course on the mechanics of particles and rigid bodies, the book introduces new, coordinate-free methods for rotational dynamics and orbital mechanics, developing these subjects to a level well beyond that of other textbooks. These methods have been widely applied in recent years to biomechanics and robotics, to computer vision and geometric design, to orbital mechanics in government and industrial space programs, as well as to other branches of physics. The book applies them to the major perturbations in the solar system, including the planetary perturbations of Mercury's perihelion. Geometric algebra integrates conventional vector algebra (along with its established notations) into a system with all the advantages of quaternions and spinors. Thus, it increases the power of the mathematical language of classical mechanics while bringing it closer to the language of quantum mechanics. This book systematically develops purely mathematical applications of geometric algebra useful in physics, including extensive applications to linear algebra and transformation groups. It contains sufficient material for a course on mathematical topics alone. The second edition has been expanded by nearly a hundred pages on relativistic mechanics. The treatment is unique in its exclusive use of geometric algebra and in its detailed treatment of spacetime maps, collisions, motion in uniform fields and relativistic precession. It conforms with Einstein's view that the Special Theory of Relativity is the culmination of developments in classical mechanics.
Posted in Language Arts & Disciplines

Classical Mechanics

Author: J. Michael Finn

Publisher: Jones & Bartlett Publishers

ISBN: 0763779601

Category: Science

Page: 500

View: 9510

Classical Mechanics presents an updated treatment of the dynamics of particles and particle systems suitable for students preparing for advanced study of physics and closely related fields, such as astronomy and the applied engineering sciences. Compared to older books on this subject, the mathematical treatment has been updated for the study of more advanced topics in quantum mechanics, statistical mechanics, and nonlinear and orbital mechanics. The text begins with a review of the principles of classical Newtonian dynamics of particles and particle systems and proceeds to show how these principles are modified and extended by developments in the field. The text ends with the unification of space and time given by the Special Theory of Relativity. In addition, Hamiltonian dynamics and the concept of phase space are introduced early on. This allows integration of the concepts of chaos and other nonlinear effects into the main flow of the text. The role of symmetries and the underlying geometric structure of space-time is a key theme. In the latter chapters, the connection between classical and quantum mechanics is examined in some detail.
Posted in Science

The Structure of Physics

Author: Carl F. von Weizsäcker

Publisher: Springer Science & Business Media

ISBN: 1402052359

Category: Science

Page: 360

View: 9302

The book is a newly arranged and revised English version of "Aufbau der Physik" by Carl Friedrich von Weizsäcker. Some original chapters and sections have been deleted, and a new chapter about further insights and results of ur-theoretic research of the late 1980’s and 1990’s has been included. Carl Friedrich von Weizsäcker combines the perspectives of science, philosophy, religion and politics with a view towards the challenges as well as the responsibilities of our time.
Posted in Science

Concepts of Force

Author: Max Jammer

Publisher: Courier Corporation

ISBN: 0486150569

Category: Science

Page: 288

View: 5425

This work by a noted physicist traces conceptual development from ancient to modern times. Kepler's initiation, Newton's definition, subsequent reinterpretation — contrasting concepts of Leibniz, Boscovich, Kant with those of Mach, Kirchhoff, Hertz. "An excellent presentation." — Science.
Posted in Science

Foundations of Classical and Quantum Electrodynamics

Author: Igor N. Toptygin

Publisher: John Wiley & Sons

ISBN: 3527677518

Category: Science

Page: 734

View: 5751

This advanced textbook covers many fundamental, traditional and new branches of electrodynamics, as well as the related fields of special relativity, quantum mechanics and quantum electrodynamics. The book introduces the material at different levels, oriented towards 3rd-4th year bachelor, master, and PhD students. This is so as to describe the whole complexity of physical phenomena, instead of a mosaic of disconnected data. The required mathematical background is collated in Chapter 1, while the necessary physical background is included in the main text of the corresponding chapters and also given in appendices. The content is based on teaching material tested on students over many years, and their training to apply general theory for solving scientific and engineering problems. To this aim, the book contains approximately 800 examples and problems, many of which are described in detail. Some of these problems are designed for students to work on their own with only the answers and descriptions of results, and may be solved selectively. The examples are key ingredients to the theoretical course; the user should study all of them while reading the corresponding chapters. Equally suitable as a reference for researchers specialized in science and engineering.
Posted in Science

Quantum Theory: Informational Foundations and Foils

Author: Giulio Chiribella,Robert W. Spekkens

Publisher: Springer

ISBN: 9401773033

Category: Science

Page: 528

View: 1742

This book provides the first unified overview of the burgeoning research area at the interface between Quantum Foundations and Quantum Information. Topics include: operational alternatives to quantum theory, information-theoretic reconstructions of the quantum formalism, mathematical frameworks for operational theories, and device-independent features of the set of quantum correlations. Powered by the injection of fresh ideas from the field of Quantum Information and Computation, the foundations of Quantum Mechanics are in the midst of a renaissance. The last two decades have seen an explosion of new results and research directions, attracting broad interest in the scientific community. The variety and number of different approaches, however, makes it challenging for a newcomer to obtain a big picture of the field and of its high-level goals. Here, fourteen original contributions from leading experts in the field cover some of the most promising research directions that have emerged in the new wave of quantum foundations. The book is directed at researchers in physics, computer science, and mathematics and would be appropriate as the basis of a graduate course in Quantum Foundations.
Posted in Science

Mathematical Reviews

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 9832

Posted in Mathematics

Differentialgeometrie, Topologie und Physik

Author: Mikio Nakahara

Publisher: Springer-Verlag

ISBN: 3662453002

Category: Science

Page: 597

View: 1415

Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.
Posted in Science

Classical Mechanics, Second Edition

Author: Tai L. Chow

Publisher: CRC Press

ISBN: 1466570008

Category: Science

Page: 639

View: 2758

Classical Mechanics, Second Edition presents a complete account of the classical mechanics of particles and systems for physics students at the advanced undergraduate level. The book evolved from a set of lecture notes for a course on the subject taught by the author at California State University, Stanislaus, for many years. It assumes the reader has been exposed to a course in calculus and a calculus-based general physics course. However, no prior knowledge of differential equations is required. Differential equations and new mathematical methods are developed in the text as the occasion demands. The book begins by describing fundamental concepts, such as velocity and acceleration, upon which subsequent chapters build. The second edition has been updated with two new sections added to the chapter on Hamiltonian formulations, and the chapter on collisions and scattering has been rewritten. The book also contains three new chapters covering Newtonian gravity, the Hamilton-Jacobi theory of dynamics, and an introduction to Lagrangian and Hamiltonian formulations for continuous systems and classical fields. To help students develop more familiarity with Lagrangian and Hamiltonian formulations, these essential methods are introduced relatively early in the text. The topics discussed emphasize a modern perspective, with special note given to concepts that were instrumental in the development of modern physics, for example, the relationship between symmetries and the laws of conservation. Applications to other branches of physics are also included wherever possible. The author provides detailed mathematical manipulations, while limiting the inclusion of the more lengthy and tedious ones. Each chapter contains homework problems of varying degrees of difficulty to enhance understanding of the material in the text. This edition also contains four new appendices on D'Alembert's principle and Lagrange's equations, derivation of Hamilton’s principle, Noether’s theorem, and conic sections.
Posted in Science

Information Theory and Quantum Physics

Physical Foundations for Understanding the Conscious Process

Author: Herbert S. Green

Publisher: Springer Science & Business Media

ISBN: 364257162X

Category: Science

Page: 244

View: 3072

In this highly readable book, H.S. Green, a former student of Max Born and well known as an author in physics and in the philosophy of science, presents a timely analysis of theoretical physics and related fundamental problems.
Posted in Science

Philosophy and the Foundations of Dynamics

Author: Lawrence Sklar

Publisher: Cambridge University Press

ISBN: 1139619217

Category: Science

Page: N.A

View: 8837

Although now replaced by more modern theories, classical mechanics remains a core foundational element of physical theory. From its inception, the theory of dynamics has been riddled with conceptual issues and differing philosophical interpretations and throughout its long historical development, it has shown subtle conceptual refinement. The interpretive program for the theory has also shown deep evolutionary change over time. Lawrence Sklar discusses crucial issues in the central theory from which contemporary foundational theories are derived and shows how some core issues (the nature of force, the place of absolute reference frames) have nevertheless remained deep puzzles despite the increasingly sophisticated understanding of the theory which has been acquired over time. His book will be of great interest to philosophers of science, philosophers in general and physicists concerned with foundational interpretive issues in their field.
Posted in Science

Electrodynamics and Classical Theory of Fields & Particles

Author: Asim Orhan Barut

Publisher: Courier Corporation

ISBN: 9780486640389

Category: Science

Page: 235

View: 2356

The first comprehensive treatment of relativistic electrodynamics, this volume remains essential reading. This graduate-level text was written by a distinguished theoretical physicist. It deftly reveals the classical underpinnings of modern quantum field theory with explorations of space-time, Lorentz transformations, conservation laws, equations of motion, Green’s functions, and action-at-a-distance electrodynamics. 1964 edition.
Posted in Science

Introduction to Soliton Theory: Applications to Mechanics

Author: Ligia Munteanu,Stefania Donescu

Publisher: Springer Science & Business Media

ISBN: 1402025777

Category: Mathematics

Page: 222

View: 5496

This monograph is planned to provide the application of the soliton theory to solve certain practical problems selected from the fields of solid mechanics, fluid mechanics and biomechanics. The work is based mainly on the authors’ research carried out at their home institutes, and on some specified, significant results existing in the published literature. The methodology to study a given evolution equation is to seek the waves of permanent form, to test whether it possesses any symmetry properties, and whether it is stable and solitonic in nature. Students of physics, applied mathematics, and engineering are usually exposed to various branches of nonlinear mechanics, especially to the soliton theory. The soliton is regarded as an entity, a quasi-particle, which conserves its character and interacts with the surroundings and other solitons as a particle. It is related to a strange phenomenon, which consists in the propagation of certain waves without attenuation in dissipative media. This phenomenon has been known for about 200 years (it was described, for example, by the Joule Verne's novel Les histoires de Jean Marie Cabidoulin, Éd. Hetzel), but its detailed quantitative description became possible only in the last 30 years due to the exceptional development of computers. The discovery of the physical soliton is attributed to John Scott Russell. In 1834, Russell was observing a boat being drawn along a narrow channel by a pair of horses.
Posted in Mathematics

Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems

Author: Masanori Ohya,I. Volovich

Publisher: Springer Science & Business Media

ISBN: 9789400701717

Category: Science

Page: 760

View: 1654

This monograph provides a mathematical foundation to the theory of quantum information and computation, with applications to various open systems including nano and bio systems. It includes introductory material on algorithm, functional analysis, probability theory, information theory, quantum mechanics and quantum field theory. Apart from standard material on quantum information like quantum algorithm and teleportation, the authors discuss findings on the theory of entropy in C*-dynamical systems, space-time dependence of quantum entangled states, entangling operators, adaptive dynamics, relativistic quantum information, and a new paradigm for quantum computation beyond the usual quantum Turing machine. Also, some important applications of information theory to genetics and life sciences, as well as recent experimental and theoretical discoveries in quantum photosynthesis are described.
Posted in Science

Quanten

Einstein, Bohr und die große Debatte über das Wesen der Wirklichkeit

Author: Manjit Kumar

Publisher: N.A

ISBN: 9783827010193

Category:

Page: 540

View: 432

Posted in

Mathematical Foundations of Quantum Statistics

Author: Aleksandr Iakovlevich Khinchin

Publisher: Courier Corporation

ISBN: 9780486400259

Category: Science

Page: 232

View: 5051

A coherent, well-organized look at the basis of quantum statistics’ computational methods, the determination of the mean values of occupation numbers, the foundations of the statistics of photons and material particles, thermodynamics.
Posted in Science

Geometric Continuum Mechanics and Induced Beam Theories

Author: Simon R. Eugster

Publisher: Springer

ISBN: 3319164953

Category: Technology & Engineering

Page: 146

View: 1462

This research monograph discusses novel approaches to geometric continuum mechanics and introduces beams as constraint continuous bodies. In the coordinate free and metric independent geometric formulation of continuum mechanics as well as for beam theories, the principle of virtual work serves as the fundamental principle of mechanics. Based on the perception of analytical mechanics that forces of a mechanical system are defined as dual quantities to the kinematical description, the virtual work approach is a systematic way to treat arbitrary mechanical systems. Whereas this methodology is very convenient to formulate induced beam theories, it is essential in geometric continuum mechanics when the assumptions on the physical space are relaxed and the space is modeled as a smooth manifold. The book addresses researcher and graduate students in engineering and mathematics interested in recent developments of a geometric formulation of continuum mechanics and a hierarchical development of induced beam theories.
Posted in Technology & Engineering

Rational Reconstructions of Modern Physics

Author: Peter Mittelstaedt

Publisher: Springer Science & Business Media

ISBN: 9400755937

Category: Science

Page: 141

View: 1023

Newton’s classical physics and its underlying ontology are loaded with several metaphysical hypotheses that cannot be justified by rational reasoning nor by experimental evidence. Furthermore, it is well known that some of these hypotheses are not contained in the great theories of Modern Physics, such as the theory of Special Relativity and Quantum Mechanics. This book shows that, on the basis of Newton’s classical physics and by rational reconstruction, the theory of Special Relativity as well as Quantum Mechanics can be obtained by partly eliminating or attenuating the metaphysical hypotheses. Moreover, it is shown that these reconstructions do not require additional hypotheses or new experimental results. In the second edition the rational reconstructions are completed with respect to General Relativity and Cosmology. In addition, the statistics of quantum objects is elaborated in more detail with respect to the rational reconstruction of quantum mechanics. The new material completes the approach of the book as much as it is possible at the present state of knowledge. Presumably, the most important contribution that is added to the second edition refers to the problem of interpretation of the three great theories of Modern Physics. It is shown in detail that in the light of rational reconstructions even realistic interpretations of the three theories of Modern Physics are possible and can easily be achieved.
Posted in Science