Author: Gabor Toth

Publisher: Springer

ISBN: 3319237330

Category: Mathematics

Page: 278

View: 9806

Skip to content
#
Search Results for: measures-of-symmetry-for-convex-sets-and-stability-universitext

## Measures of Symmetry for Convex Sets and Stability

This textbook treats two important and related matters in convex geometry: the quantification of symmetry of a convex set—measures of symmetry—and the degree to which convex sets that nearly minimize such measures of symmetry are themselves nearly symmetric—the phenomenon of stability. By gathering the subject’s core ideas and highlights around Grünbaum’s general notion of measure of symmetry, it paints a coherent picture of the subject, and guides the reader from the basics to the state-of-the-art. The exposition takes various paths to results in order to develop the reader’s grasp of the unity of ideas, while interspersed remarks enrich the material with a behind-the-scenes view of corollaries and logical connections, alternative proofs, and allied results from the literature. Numerous illustrations elucidate definitions and key constructions, and over 70 exercises—with hints and references for the more difficult ones—test and sharpen the reader’s comprehension. The presentation includes: a basic course covering foundational notions in convex geometry, the three pillars of the combinatorial theory (the theorems of Carathéodory, Radon, and Helly), critical sets and Minkowski measure, the Minkowski–Radon inequality, and, to illustrate the general theory, a study of convex bodies of constant width; two proofs of F. John’s ellipsoid theorem; a treatment of the stability of Minkowski measure, the Banach–Mazur metric, and Groemer’s stability estimate for the Brunn–Minkowski inequality; important specializations of Grünbaum’s abstract measure of symmetry, such as Winternitz measure, the Rogers–Shepard volume ratio, and Guo’s Lp -Minkowski measure; a construction by the author of a new sequence of measures of symmetry, the kth mean Minkowski measure; and lastly, an intriguing application to the moduli space of certain distinguished maps from a Riemannian homogeneous space to spheres—illustrating the broad mathematical relevance of the book’s subject.
## Linear Algebra and Matrices

This introductory textbook grew out of several courses in linear algebra given over more than a decade and includes such helpful material as constructive discussions about the motivation of fundamental concepts, many worked-out problems in each chapter, and topics rarely covered in typical linear algebra textbooks.The authors use abstract notions and arguments to give the complete proof of the Jordan canonical form and, more generally, the rational canonical form of square matrices over fields. They also provide the notion of tensor products of vector spaces and linear transformations. Matrices are treated in depth, with coverage of the stability of matrix iterations, the eigenvalue properties of linear transformations in inner product spaces, singular value decomposition, and min-max characterizations of Hermitian matrices and nonnegative irreducible matrices. The authors show the many topics and tools encompassed by modern linear algebra to emphasize its relationship to other areas of mathematics. The text is intended for advanced undergraduate students. Beginning graduate students seeking an introduction to the subject will also find it of interest.
## Mathematical Gauge Theory

The Standard Model is the foundation of modern particle and high energy physics. This book explains the mathematical background behind the Standard Model, translating ideas from physics into a mathematical language and vice versa. The first part of the book covers the mathematical theory of Lie groups and Lie algebras, fibre bundles, connections, curvature and spinors. The second part then gives a detailed exposition of how these concepts are applied in physics, concerning topics such as the Lagrangians of gauge and matter fields, spontaneous symmetry breaking, the Higgs boson and mass generation of gauge bosons and fermions. The book also contains a chapter on advanced and modern topics in particle physics, such as neutrino masses, CP violation and Grand Unification. This carefully written textbook is aimed at graduate students of mathematics and physics. It contains numerous examples and more than 150 exercises, making it suitable for self-study and use alongside lecture courses. Only a basic knowledge of differentiable manifolds and special relativity is required, summarized in the appendix.
## Annales de la faculté des sciences de Toulouse

## Initiation to Global Finslerian Geometry

After a brief description of the evolution of thinking on Finslerian geometry starting from Riemann, Finsler, Berwald and Elie Cartan, the book gives a clear and precise treatment of this geometry. The first three chapters develop the basic notions and methods, introduced by the author, to reach the global problems in Finslerian Geometry. The next five chapters are independent of each other, and deal with among others the geometry of generalized Einstein manifolds, the classification of Finslerian manifolds of constant sectional curvatures. They also give a treatment of isometric, affine, projective and conformal vector fields on the unitary tangent fibre bundle. Key features - Theory of connections of vectors and directions on the unitary tangent fibre bundle. - Complete list of Bianchi identities for a regular conection of directions. - Geometry of generalized Einstein manifolds. - Classification of Finslerian manifolds. - Affine, isometric, conformal and projective vector fields on the unitary tangent fibre bundle. Theory of connections of vectors and directions on the unitary tangent fibre bundle. Complete list of Bianchi identities for a regular conection of directions. Geometry of generalized Einstein manifolds. Classification of Finslerian manifolds. Affine, isometric, conformal and projective vector fields on the unitary tangent fibre bundle.
## Real Analysis: Measures, Integrals and Applications

Real Analysis: Measures, Integrals and Applications is devoted to the basics of integration theory and its related topics. The main emphasis is made on the properties of the Lebesgue integral and various applications both classical and those rarely covered in literature. This book provides a detailed introduction to Lebesgue measure and integration as well as the classical results concerning integrals of multivariable functions. It examines the concept of the Hausdorff measure, the properties of the area on smooth and Lipschitz surfaces, the divergence formula, and Laplace's method for finding the asymptotic behavior of integrals. The general theory is then applied to harmonic analysis, geometry, and topology. Preliminaries are provided on probability theory, including the study of the Rademacher functions as a sequence of independent random variables. The book contains more than 600 examples and exercises. The reader who has mastered the first third of the book will be able to study other areas of mathematics that use integration, such as probability theory, statistics, functional analysis, partial probability theory, statistics, functional analysis, partial differential equations and others. Real Analysis: Measures, Integrals and Applications is intended for advanced undergraduate and graduate students in mathematics and physics. It assumes that the reader is familiar with basic linear algebra and differential calculus of functions of several variables.
## Handbook of Dynamical Systems

This second half of Volume 1 of this Handbook follows Volume 1A, which was published in 2002. The contents of these two tightly integrated parts taken together come close to a realization of the program formulated in the introductory survey “Principal Structures of Volume 1A. The present volume contains surveys on subjects in four areas of dynamical systems: Hyperbolic dynamics, parabolic dynamics, ergodic theory and infinite-dimensional dynamical systems (partial differential equations). . Written by experts in the field. . The coverage of ergodic theory in these two parts of Volume 1 is considerably more broad and thorough than that provided in other existing sources. . The final cluster of chapters discusses partial differential equations from the point of view of dynamical systems.
## Data Depth

The book is a collection of some of the research presented at the workshop of the same name held in May 2003 at Rutgers University. The workshop brought together researchers from two different communities: statisticians and specialists in computational geometry. The main idea unifying these two research areas turned out to be the notion of data depth, which is an important notion both in statistics and in the study of efficiency of algorithms used in computational geometry. Many of the articles in the book lay down the foundations for further collaboration and interdisciplinary research.
## The Concentration of Measure Phenomenon

It was undoubtedly a necessary task to collect all the results on the concentration of measure during the past years in a monograph. The author did this very successfully and the book is an important contribution to the topic. It will surely influence further research in this area considerably. The book is very well written, and it was a great pleasure for the reviewer to read it. --Mathematical Reviews The observation of the concentration of measure phenomenon is inspired by isoperimetric inequalities. A familiar example is the way the uniform measure on the standard sphere $S^n$ becomes concentrated around the equator as the dimension gets large. This property may be interpreted in terms of functions on the sphere with small oscillations, an idea going back to Levy. The phenomenon also occurs in probability, as a version of the law of large numbers, due to Emile Borel. This book offers the basic techniques and examples of the concentration of measure phenomenon. The concentration of measure phenomenon was put forward in the early seventies by V. Milman in the asymptotic geometry of Banach spaces. It is of powerful interest in applications in various areas, such as geometry, functional analysis and infinite-dimensional integration, discrete mathematics and complexity theory, and probability theory. Particular emphasis is on geometric, functional, and probabilistic tools to reach and describe measure concentration in a number of settings. The book presents concentration functions and inequalities, isoperimetric and functional examples, spectrum and topological applications, product measures, entropic and transportation methods, as well as aspects of M. Talagrand's deep investigation of concentration in product spaces and its application in discrete mathematics and probability theory, supremum of Gaussian and empirical processes, spin glass, random matrices, etc. Prerequisites are a basic background in measure theory, functional analysis, and probability theory.
## Postmodern Analysis

What is the title of this book intended to signify, what connotations is the adjective “Postmodern” meant to carry? A potential reader will surely pose this question. To answer it, I should describe what distinguishes the - proach to analysis presented here from what has by its protagonists been called “Modern Analysis”. “Modern Analysis” as represented in the works of the Bourbaki group or in the textbooks by Jean Dieudonn ́ e is characterized by its systematic and axiomatic treatment and by its drive towards a high level of abstraction. Given the tendency of many prior treatises on analysis to degenerate into a collection of rather unconnected tricks to solve special problems, this de?nitely represented a healthy achievement. In any case, for the development of a consistent and powerful mathematical theory, it seems to be necessary to concentrate solely on the internal problems and structures and to neglect the relations to other ?elds of scienti?c, even of mathematical study for a certain while. Almost complete isolation may be required to reach the level of intellectual elegance and perfection that only a good mathem- ical theory can acquire. However, once this level has been reached, it can be useful to open one’s eyes again to the inspiration coming from concrete external problems.
## Three-Dimensional Flows

In this book, the authors present the elements of a general theory for flows on three-dimensional compact boundaryless manifolds, encompassing flows with equilibria accumulated by regular orbits. The book aims to provide a global perspective of this theory and make it easier for the reader to digest the growing literature on this subject. This is not the first book on the subject of dynamical systems, but there are distinct aspects which together make this book unique. Firstly, this book treats mostly continuous time dynamical systems, instead of its discrete counterpart, exhaustively treated in some other texts. Secondly, this book treats all the subjects from a mathematical perspective with proofs of most of the results included. Thirdly, this book is meant to be an advanced graduate textbook and not just a reference book or monograph on the subject. This aspect is reflected in the way the cover material is presented, with careful and complete proofs, and precise references to topics in the book.
## Introductory Lectures on Fluctuations of Lévy Processes with Applications

This textbook forms the basis of a graduate course on the theory and applications of Lévy processes, from the perspective of their path fluctuations. The book aims to be mathematically rigorous while still providing an intuitive feel for underlying principles. The results and applications often focus on the case of Lévy processes with jumps in only one direction, for which recent theoretical advances have yielded a higher degree of mathematical transparency and explicitness.
## Geometry of Isotropic Convex Bodies

The study of high-dimensional convex bodies from a geometric and analytic point of view, with an emphasis on the dependence of various parameters on the dimension stands at the intersection of classical convex geometry and the local theory of Banach spaces. It is also closely linked to many other fields, such as probability theory, partial differential equations, Riemannian geometry, harmonic analysis and combinatorics. It is now understood that the convexity assumption forces most of the volume of a high-dimensional convex body to be concentrated in some canonical way and the main question is whether, under some natural normalization, the answer to many fundamental questions should be independent of the dimension. The aim of this book is to introduce a number of well-known questions regarding the distribution of volume in high-dimensional convex bodies, which are exactly of this nature: among them are the slicing problem, the thin shell conjecture and the Kannan-Lovász-Simonovits conjecture. This book provides a self-contained and up to date account of the progress that has been made in the last fifteen years.
## Convex Optimization

A comprehensive introduction to the tools, techniques and applications of convex optimization.
## Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains

## Asymptotic Geometric Analysis, Part I

The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomenon", one of the most powerful tools of the theory, responsible for many counterintuitive results. A central theme in this book is the interaction of randomness and pattern. At first glance, life in high dimension seems to mean the existence of multiple "possibilities", so one may expect an increase in the diversity and complexity as dimension increases. However, the concentration of measure and effects caused by convexity show that this diversity is compensated and order and patterns are created for arbitrary convex bodies in the mixture caused by high dimensionality. The book is intended for graduate students and researchers who want to learn about this exciting subject. Among the topics covered in the book are convexity, concentration phenomena, covering numbers, Dvoretzky-type theorems, volume distribution in convex bodies, and more.
## Normally Hyperbolic Invariant Manifolds

This monograph treats normally hyperbolic invariant manifolds, with a focus on noncompactness. These objects generalize hyperbolic fixed points and are ubiquitous in dynamical systems. First, normally hyperbolic invariant manifolds and their relation to hyperbolic fixed points and center manifolds, as well as, overviews of history and methods of proofs are presented. Furthermore, issues (such as uniformity and bounded geometry) arising due to noncompactness are discussed in great detail with examples. The main new result shown is a proof of persistence for noncompact normally hyperbolic invariant manifolds in Riemannian manifolds of bounded geometry. This extends well-known results by Fenichel and Hirsch, Pugh and Shub, and is complementary to noncompactness results in Banach spaces by Bates, Lu and Zeng. Along the way, some new results in bounded geometry are obtained and a framework is developed to analyze ODEs in a differential geometric context. Finally, the main result is extended to time and parameter dependent systems and overflowing invariant manifolds.
## Analysis

This textbook covers the main results and methods of real analysis in a single volume. Taking a progressive approach to equations and transformations, this book starts with the very foundations of real analysis (set theory, order, convergence, and measure theory) before presenting powerful results that can be applied to concrete problems. In addition to classical results of functional analysis, differential calculus and integration, Analysis discusses topics such as convex analysis, dissipative operators and semigroups which are often absent from classical treatises. Acknowledging that analysis has significantly contributed to the understanding and development of the present world, the book further elaborates on techniques which pervade modern civilization, including wavelets in information theory, the Radon transform in medical imaging and partial differential equations in various mechanical and physical phenomena. Advanced undergraduate and graduate students, engineers as well as practitioners wishing to familiarise themselves with concepts and applications of analysis will find this book useful. With its content split into several topics of interest, the book’s style and layout make it suitable for use in several courses, while its self-contained character makes it appropriate for self-study.
## Gradient Flows

The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.
## A Taste of Jordan Algebras

This book describes the history of Jordan algebras and describes in full mathematical detail the recent structure theory for Jordan algebras of arbitrary dimension due to Efim Zel'manov. Jordan algebras crop up in many surprising settings, and find application to a variety of mathematical areas. No knowledge is required beyond standard first-year graduate algebra courses.

Full PDF eBook Download Free

Author: Gabor Toth

Publisher: Springer

ISBN: 3319237330

Category: Mathematics

Page: 278

View: 9806

Author: Shmuel Friedland,Mohsen Aliabadi

Publisher: SIAM

ISBN: 161197514X

Category: Algebras, Linear

Page: 285

View: 5897

*With Applications to the Standard Model of Particle Physics*

Author: Mark J.D. Hamilton

Publisher: Springer

ISBN: 3319684396

Category: Mathematics

Page: 658

View: 4046

*Mathématiques*

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 8775

Author: Hassan Akbar-Zadeh

Publisher: Elsevier

ISBN: 9780080461700

Category: Mathematics

Page: 264

View: 3949

Author: Boris Makarov,Anatolii Podkorytov

Publisher: Springer Science & Business Media

ISBN: 1447151224

Category: Mathematics

Page: 772

View: 9793

*Volume 1B*

Author: A. Katok,B. Hasselblatt

Publisher: Elsevier

ISBN: 9780080478227

Category: Mathematics

Page: 1234

View: 1035

*Robust Multivariate Analysis, Computational Geometry, and Applications*

Author: Regina Y. Liu,Robert Joseph Serfling,Diane L. Souvaine

Publisher: American Mathematical Soc.

ISBN: 0821835963

Category: Mathematics

Page: 246

View: 6807

Author: Michel Ledoux

Publisher: American Mathematical Soc.

ISBN: 0821837923

Category: Mathematics

Page: 181

View: 9625

Author: Jürgen Jost

Publisher: Springer Science & Business Media

ISBN: 9783540258308

Category: Mathematics

Page: 375

View: 6731

Author: Vítor Araújo,Maria José Pacifico

Publisher: Springer Science & Business Media

ISBN: 3642114148

Category: Mathematics

Page: 355

View: 3952

Author: Andreas Kyprianou

Publisher: Springer Science & Business Media

ISBN: 9783540313434

Category: Mathematics

Page: 378

View: 6797

Author: Silouanos Brazitikos,Apostolos Giannopoulos,Petros Valettas,Beatrice-Helen Vritsiou

Publisher: American Mathematical Soc.

ISBN: 1470414562

Category: Mathematics

Page: 594

View: 1125

Author: Stephen P. Boyd,Lieven Vandenberghe

Publisher: Cambridge University Press

ISBN: 9780521833783

Category: Business & Economics

Page: 716

View: 6987

Author: Luogeng Hua

Publisher: American Mathematical Soc.

ISBN: 0821815563

Category: Mathematics

Page: 164

View: 5256

Author: Shiri Artstein-Avidan, Apostolos Giannopoulos, Vitali D. Milman

Publisher: American Mathematical Soc.

ISBN: 1470421933

Category: Functional analysis

Page: 451

View: 2708

*The Noncompact Case*

Author: Jaap Eldering

Publisher: Springer Science & Business Media

ISBN: 9462390037

Category: Mathematics

Page: 189

View: 4556

*From Concepts to Applications*

Author: Jean-Paul Penot

Publisher: Springer

ISBN: 331932411X

Category: Mathematics

Page: 669

View: 9452

*In Metric Spaces and in the Space of Probability Measures*

Author: Luigi Ambrosio,Nicola Gigli,Giuseppe Savare

Publisher: Springer Science & Business Media

ISBN: 9783764387228

Category: Mathematics

Page: 334

View: 889

Author: Kevin McCrimmon

Publisher: Springer Science & Business Media

ISBN: 0387217967

Category: Mathematics

Page: 563

View: 4478