Author: K. Chen,Peter J. Giblin,A. Irving

Publisher: Cambridge University Press

ISBN: 9780521639200

Category: Computers

Page: 306

View: 1766

Skip to content
#
Search Results for: mathematical-explorations-matlab

## Mathematical Explorations with MATLAB

This book is about the kind of mathematics usually encountered in first year university courses. A key feature of the book is that this mathematics is explored in depth using the popular and powerful package Matlab. The emphasis is on understanding and investigating the mathematics, and putting it into practice in a wide variety of modelling situations. In the process, the reader will gain some fluency with Matlab, no starting knowledge of the package being assumed.
## Explorations of Mathematical Models in Biology with MATLAB

Explore and analyze the solutions of mathematical models from diverse disciplines As biology increasingly depends on data, algorithms, and models, it has become necessary to use a computing language, such as the user-friendly MATLAB, to focus more on building and analyzing models as opposed to configuring tedious calculations. Explorations of Mathematical Models in Biology with MATLAB provides an introduction to model creation using MATLAB, followed by the translation, analysis, interpretation, and observation of the models. With an integrated and interdisciplinary approach that embeds mathematical modeling into biological applications, the book illustrates numerous applications of mathematical techniques within biology, ecology, and environmental sciences. Featuring a quantitative, computational, and mathematical approach, the book includes: Examples of real-world applications, such as population dynamics, genetics, drug administration, interacting species, and the spread of contagious diseases, to showcase the relevancy and wide applicability of abstract mathematical techniques Discussion of various mathematical concepts, such as Markov chains, matrix algebra, eigenvalues, eigenvectors, first-order linear difference equations, and nonlinear first-order difference equations Coverage of difference equations to model a wide range of real-life discrete time situations in diverse areas as well as discussions on matrices to model linear problems Solutions to selected exercises and additional MATLAB codes Explorations of Mathematical Models in Biology with MATLAB is an ideal textbook for upper-undergraduate courses in mathematical models in biology, theoretical ecology, bioeconomics, forensic science, applied mathematics, and environmental science. The book is also an excellent reference for biologists, ecologists, mathematicians, biomathematicians, and environmental and resource economists.
## Differential Equations with MATLAB

A unique textbook for an undergraduate course on mathematical modeling, Differential Equations with MATLAB: Exploration, Applications, and Theory provides students with an understanding of the practical and theoretical aspects of mathematical models involving ordinary and partial differential equations (ODEs and PDEs). The text presents a unifying picture inherent to the study and analysis of more than 20 distinct models spanning disciplines such as physics, engineering, and finance. The first part of the book presents systems of linear ODEs. The text develops mathematical models from ten disparate fields, including pharmacokinetics, chemistry, classical mechanics, neural networks, physiology, and electrical circuits. Focusing on linear PDEs, the second part covers PDEs that arise in the mathematical modeling of phenomena in ten other areas, including heat conduction, wave propagation, fluid flow through fissured rocks, pattern formation, and financial mathematics. The authors engage students by posing questions of all types throughout, including verifying details, proving conjectures of actual results, analyzing broad strokes that occur within the development of the theory, and applying the theory to specific models. The authors’ accessible style encourages students to actively work through the material and answer these questions. In addition, the extensive use of MATLAB® GUIs allows students to discover patterns and make conjectures.
## Elementary Mathematical and Computational Tools for Electrical and Computer Engineers Using MATLAB

Engineers around the world depend on MATLAB for its power, usability, and outstanding graphics capabilities. Yet too often, engineering students are either left on their own to acquire the background they need to use MATLAB, or they must learn the program concurrently within an advanced course. Both of these options delay students from solving realistic design problems, especially when they do not have a text focused on applications relevant to their field and written at the appropriate level of mathematics. Ideal for use as a short-course textbook and for self-study Elementary Mathematical and Computational Tools for Electrical and Computer Engineers Using MATLAB fills that gap. Accessible after just one semester of calculus, it introduces the many practical analytical and numerical tools that are essential to success both in future studies and in professional life. Sharply focused on the needs of the electrical and computer engineering communities, the text provides a wealth of relevant exercises and design problems. Changes in MATLAB's version 6.0 are included in a special addendum. The lack of skills in fundamental quantitative tools can seriously impede progress in one's engineering studies or career. By working through this text, either in a lecture/lab environment or by themselves, readers will not only begin mastering MATLAB, but they will also hone their analytical and computational skills to a level that will help them to enjoy and succeed in subsequent electrical and computer engineering pursuits.
## Explorations of Mathematical Models in Biology with MATLAB

Explore and analyze the solutions of mathematical models from diverse disciplines As biology increasingly depends on data, algorithms, and models, it has become necessary to use a computing language, such as the user-friendly MATLAB, to focus more on building and analyzing models as opposed to configuring tedious calculations. Explorations of Mathematical Models in Biology with MATLAB provides an introduction to model creation using MATLAB, followed by the translation, analysis, interpretation, and observation of the models. With an integrated and interdisciplinary approach that embeds mathematical modeling into biological applications, the book illustrates numerous applications of mathematical techniques within biology, ecology, and environmental sciences. Featuring a quantitative, computational, and mathematical approach, the book includes: Examples of real-world applications, such as population dynamics, genetics, drug administration, interacting species, and the spread of contagious diseases, to showcase the relevancy and wide applicability of abstract mathematical techniques Discussion of various mathematical concepts, such as Markov chains, matrix algebra, eigenvalues, eigenvectors, first-order linear difference equations, and nonlinear first-order difference equations Coverage of difference equations to model a wide range of real-life discrete time situations in diverse areas as well as discussions on matrices to model linear problems Solutions to selected exercises and additional MATLAB codes Explorations of Mathematical Models in Biology with MATLAB is an ideal textbook for upper-undergraduate courses in mathematical models in biology, theoretical ecology, bioeconomics, forensic science, applied mathematics, and environmental science. The book is also an excellent reference for biologists, ecologists, mathematicians, biomathematicians, and environmental and resource economists.
## Exercises in Computational Mathematics with MATLAB

Designed to provide tools for independent study, this book contains student-tested mathematical exercises joined with MATLAB programming exercises. Most chapters open with a review followed by theoretical and programming exercises, with detailed solutions provided for all problems including programs. Many of the MATLAB exercises are presented as Russian dolls: each question improves and completes the previous program and results are provided to validate the intermediate programs. The book offers useful MATLAB commands, advice on tables, vectors, matrices and basic commands for plotting. It contains material on eigenvalues and eigenvectors and important norms of vectors and matrices including perturbation theory; iterative methods for solving nonlinear and linear equations; polynomial and piecewise polynomial interpolation; Bézier curves; approximations of functions and integrals and more. The last two chapters considers ordinary differential equations including two point boundary value problems, and deal with finite difference methods for some partial differential equations. The format is designed to assist students working alone, with concise Review paragraphs, Math Hint footnotes on the mathematical aspects of a problem and MATLAB Hint footnotes with tips on programming.
## Explorations in Mathematical Physics

Have you ever wondered why the language of modern physics centres on geometry? Or how quantum operators and Dirac brackets work? What a convolution really is? What tensors are all about? Or what field theory and lagrangians are, and why gravity is described as curvature? This book takes you on a tour of the main ideas forming the language of modern mathematical physics. Here you will meet novel approaches to concepts such as determinants and geometry, wave function evolution, statistics, signal processing, and three-dimensional rotations. You will see how the accelerated frames of special relativity tell us about gravity. On the journey, you will discover how tensor notation relates to vector calculus, how differential geometry is built on intuitive concepts, and how variational calculus leads to field theory. You will meet quantum measurement theory, along with Green functions and the art of complex integration, and finally general relativity and cosmology. The book takes a fresh approach to tensor analysis built solely on the metric and vectors, with no need for one-forms. This gives a much more geometrical and intuitive insight into vector and tensor calculus, together with general relativity, than do traditional, more abstract methods. Don Koks is a physicist at the Defence Science and Technology Organisation in Adelaide, Australia. His doctorate in quantum cosmology was obtained from the Department of Physics and Mathematical Physics at Adelaide University. Prior work at the University of Auckland specialised in applied accelerator physics, along with pure and applied mathematics.
## Computer Explorations in Signals and Systems Using MATLAB

A comprehensive set of computer exercises of varying levels of difficulty covering the fundamentals of signals and systems. The exercises require the reader to compare answers they compute in MATLAB ® with results and predictions made based on their understanding of material. Chapter covered include Signals and Systems; Linear Time-Invariant Systems; Fourier Series Representation of Periodic Signals; The Continuous-Time Fourier Transform; The Discrete-Time Fourier Transform; Time and Frequency Analysis of Signals and Systems; Sampling; Communications Systems; The Laplace Transform; The z-Transform; Feedback Systems. For readers interested in signals and linear systems.
## MATLAB Guide to Finite Elements

later versions. In addition, the CD-ROM contains a complete solutions manual that includes detailed solutions to all the problems in the book. If the reader does not wish to consult these solutions, then a brief list of answers is provided in printed form at the end of the book. Iwouldliketothankmyfamilymembersfortheirhelpandcontinuedsupportwi- out which this book would not have been possible. I would also like to acknowledge the help of the editior at Springer-Verlag (Dr. Thomas Ditzinger) for his assistance in bringing this book out in its present form. Finally, I would like to thank my brother, Nicola, for preparing most of the line drawings in both editions. In this edition, I am providing two email addresses for my readers to contact me ([email protected] net. jo and [email protected] edu). The old email address that appeared in the ?rst edition was cancelled in 2004. December 2006 Peter I. Kattan PrefacetotheFirstEdition 3 This is a book for people who love ?nite elements and MATLAB . We will use the popular computer package MATLAB as a matrix calculator for doing ?nite element analysis. Problems will be solved mainly using MATLAB to carry out the tedious and lengthy matrix calculations in addition to some manual manipulations especially when applying the boundary conditions. In particular the steps of the ?nite element method are emphasized in this book. The reader will not ?nd ready-made MATLAB programsforuseasblackboxes. Insteadstep-by-stepsolutionsof?niteelementpr- lems are examined in detail using MATLAB.
## Modeling of Curves and Surfaces with MATLAB®

This text on geometry is devoted to various central geometrical topics including: graphs of functions, transformations, (non-)Euclidean geometries, curves and surfaces as well as their applications in a variety of disciplines. This book presents elementary methods for analytical modeling and demonstrates the potential for symbolic computational tools to support the development of analytical solutions. The author systematically examines several powerful tools of MATLAB® including 2D and 3D animation of geometric images with shadows and colors and transformations using matrices. With over 150 stimulating exercises and problems, this text integrates traditional differential and non-Euclidean geometries with more current computer systems in a practical and user-friendly format. This text is an excellent classroom resource or self-study reference for undergraduate students in a variety of disciplines.
## Development of Innovative Drugs via Modeling with MATLAB

The development of innovative drugs is becoming more difficult while relying on empirical approaches. This inspired all major pharmaceutical companies to pursue alternative model-based paradigms. The key question is: How to find innovative compounds and, subsequently, appropriate dosage regimens? Written from the industry perspective and based on many years of experience, this book offers: - Concepts for creation of drug-disease models, introduced and supplemented with extensive MATLAB programs - Guidance for exploration and modification of these programs to enhance the understanding of key principles - Usage of differential equations to pharmacokinetic, pharmacodynamic and (patho-) physiologic problems thereby acknowledging their dynamic nature - A range of topics from single exponential decay to adaptive dosing, from single subject exploration to clinical trial simulation, and from empirical to mechanistic disease modeling. Students with an undergraduate mathematical background or equivalent education, interest in life sciences and skills in a high-level programming language such as MATLAB, are encouraged to engage in model-based pharmaceutical research and development.
## MATLAB for Neuroscientists

MATLAB for Neuroscientists serves as the only complete study manual and teaching resource for MATLAB, the globally accepted standard for scientific computing, in the neurosciences and psychology. This unique introduction can be used to learn the entire empirical and experimental process (including stimulus generation, experimental control, data collection, data analysis, modeling, and more), and the 2nd Edition continues to ensure that a wide variety of computational problems can be addressed in a single programming environment. This updated edition features additional material on the creation of visual stimuli, advanced psychophysics, analysis of LFP data, choice probabilities, synchrony, and advanced spectral analysis. Users at a variety of levels—advanced undergraduates, beginning graduate students, and researchers looking to modernize their skills—will learn to design and implement their own analytical tools, and gain the fluency required to meet the computational needs of neuroscience practitioners. The first complete volume on MATLAB focusing on neuroscience and psychology applications Problem-based approach with many examples from neuroscience and cognitive psychology using real data Illustrated in full color throughout Careful tutorial approach, by authors who are award-winning educators with strong teaching experience
## Matrix Algorithms in MATLAB

Matrix Algorithms in MATLAB focuses on the MATLAB code implementations of matrix algorithms. The MATLAB codes presented in the book are tested with thousands of runs of MATLAB randomly generated matrices, and the notation in the book follows the MATLAB style to ensure a smooth transition from formulation to the code, with MATLAB codes discussed in this book kept to within 100 lines for the sake of clarity. The book provides an overview and classification of the interrelations of various algorithms, as well as numerous examples to demonstrate code usage and the properties of the presented algorithms. Despite the wide availability of computer programs for matrix computations, it continues to be an active area of research and development. New applications, new algorithms, and improvements to old algorithms are constantly emerging. Presents the first book available on matrix algorithms implemented in real computer code Provides algorithms covered in three parts, the mathematical development of the algorithm using a simple example, the code implementation, and then numerical examples using the code Allows readers to gain a quick understanding of an algorithm by debugging or reading the source code Includes downloadable codes on an accompanying companion website, www.matrixalgorithmsinmatlab.com, that can be used in other software development
## Robust Adaptive Dynamic Programming

Introduction -- Adaptive Dynamic Programming for Uncertain Linear Systems -- Semi-Global Adaptive Dynamic Programming -- Global Adaptive Dynamic Programming for Nonlinear Polynomial Systems -- Robust Adaptive Dynamic Programming -- Robust Adaptive Dynamic Programming for Large-Scale Systems -- Robust Adaptive Dynamic Programming as A Theory of Sensorimotor Control
## Matrices and MATLAB

This thorough exploration of all aspects of modern matrix theory integrates the use of MatLab(tm) from the beginning.
## Mathematical and Physical Fundamentals of Climate Change

Mathematical and Physical Fundamentals of Climate Change is the first book to provide an overview of the math and physics necessary for scientists to understand and apply atmospheric and oceanic models to climate research. The book begins with basic mathematics then leads on to specific applications in atmospheric and ocean dynamics, such as fluid dynamics, atmospheric dynamics, oceanic dynamics, and glaciers and sea level rise. Mathematical and Physical Fundamentals of Climate Change provides a solid foundation in math and physics with which to understand global warming, natural climate variations, and climate models. This book informs the future users of climate models and the decision-makers of tomorrow by providing the depth they need. Developed from a course that the authors teach at Beijing Normal University, the material has been extensively class-tested and contains online resources, such as presentation files, lecture notes, solutions to problems and MATLab codes. Includes MatLab and Fortran programs that allow readers to create their own models Provides case studies to show how the math is applied to climate research Online resources include presentation files, lecture notes, and solutions to problems in book for use in classroom or self-study
## Numerical Linear Algebra with Applications

Numerical Linear Algebra with Applications is designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, using MATLAB as the vehicle for computation. The book contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. The text consists of six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra. It explains in great detail the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra. In addition to examples from engineering and science applications, proofs of required results are provided without leaving out critical details. The Preface suggests ways in which the book can be used with or without an intensive study of proofs. This book will be a useful reference for graduate or advanced undergraduate students in engineering, science, and mathematics. It will also appeal to professionals in engineering and science, such as practicing engineers who want to see how numerical linear algebra problems can be solved using a programming language such as MATLAB, MAPLE, or Mathematica. Six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra Detailed explanations and examples A through discussion of the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra Examples from engineering and science applications
## Digital Signal Processing with Matlab Examples, Volume 2

This is the second volume in a trilogy on modern Signal Processing. The three books provide a concise exposition of signal processing topics, and a guide to support individual practical exploration based on MATLAB programs. This second book focuses on recent developments in response to the demands of new digital technologies. It is divided into two parts: the first part includes four chapters on the decomposition and recovery of signals, with special emphasis on images. In turn, the second part includes three chapters and addresses important data-based actions, such as adaptive filtering, experimental modeling, and classification.
## An Introduction to Optimal Control Problems in Life Sciences and Economics

Combining control theory and modeling, this textbook introduces and builds on methods for simulating and tackling concrete problems in a variety of applied sciences. Emphasizing "learning by doing," the authors focus on examples and applications to real-world problems. An elementary presentation of advanced concepts, proofs to introduce new ideas, and carefully presented MATLAB® programs help foster an understanding of the basics, but also lead the way to new, independent research. With minimal prerequisites and exercises in each chapter, this work serves as an excellent textbook and reference for graduate and advanced undergraduate students, researchers, and practitioners in mathematics, physics, engineering, computer science, as well as biology, biotechnology, economics, and finance.
## Introduction to MATLAB for Engineers

Full PDF eBook Download Free

Author: K. Chen,Peter J. Giblin,A. Irving

Publisher: Cambridge University Press

ISBN: 9780521639200

Category: Computers

Page: 306

View: 1766

Author: Mazen Shahin

Publisher: John Wiley & Sons

ISBN: 1118548531

Category: Science

Page: 304

View: 8630

*Exploration, Applications, and Theory*

Author: Mark McKibben,Micah D. Webster

Publisher: CRC Press

ISBN: 1466557087

Category: Mathematics

Page: 497

View: 2886

Author: Jamal T. Manassah

Publisher: CRC Press

ISBN: 1466588241

Category: Technology & Engineering

Page: 368

View: 3520

Author: Mazen Shahin

Publisher: John Wiley & Sons

ISBN: 1118548531

Category: Science

Page: 304

View: 541

Author: Tom Lyche,Jean-Louis Merrien

Publisher: Springer

ISBN: 366243511X

Category: Mathematics

Page: 372

View: 4878

*The Concepts Behind an Elegant Language*

Author: Don Koks

Publisher: Springer Science & Business Media

ISBN: 0387309438

Category: Science

Page: 544

View: 9068

Author: John R. Buck,Michael M. Daniel,Andrew Singer

Publisher: N.A

ISBN: N.A

Category: Technology & Engineering

Page: 207

View: 8204

*An Interactive Approach*

Author: Peter I. Kattan

Publisher: Springer Science & Business Media

ISBN: 3540706984

Category: Computers

Page: 429

View: 4754

Author: Vladimir Rovenski

Publisher: Springer Science & Business Media

ISBN: 0387712771

Category: Mathematics

Page: 452

View: 6713

*A Practical Guide*

Author: Ronald Gieschke,Daniel Serafin

Publisher: Springer Science & Business Media

ISBN: 3642397654

Category: Medical

Page: 399

View: 7461

*An Introduction to Scientific Computing in MATLAB*

Author: Pascal Wallisch,Michael E. Lusignan,Marc D. Benayoun,Tanya I. Baker,Adam Seth Dickey,Nicholas G. Hatsopoulos

Publisher: Academic Press

ISBN: 0123838371

Category: Computers

Page: 570

View: 2956

Author: Ong U. Routh

Publisher: Academic Press

ISBN: 0128038691

Category: Mathematics

Page: 478

View: 6122

Author: Yu Jiang,Zhong-Ping Jiang

Publisher: John Wiley & Sons

ISBN: 1119132649

Category: Science

Page: 216

View: 1250

*A Tutorial*

Author: Marvin Marcus

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: 710

View: 8534

Author: Zhihua Zhang,John C. Moore

Publisher: Elsevier

ISBN: 0128005831

Category: Science

Page: 494

View: 430

*Using MATLAB*

Author: William Ford

Publisher: Academic Press

ISBN: 0123947847

Category: Mathematics

Page: 628

View: 3918

*Decomposition, Recovery, Data-Based Actions*

Author: Jose Maria Giron-Sierra

Publisher: Springer

ISBN: 9811025371

Category: Technology & Engineering

Page: 913

View: 4058

*From Mathematical Models to Numerical Simulation with MATLAB®*

Author: Sebastian Aniţa,Viorel Arnăutu,Vincenzo Capasso

Publisher: Springer Science & Business Media

ISBN: 9780817680985

Category: Mathematics

Page: 232

View: 6812

Author: William John Palm

Publisher: McGraw-Hill Medical Publishing

ISBN: 9781259012051

Category: MATLAB.

Page: 564

View: 5318