Mastering RStudio – Develop, Communicate, and Collaborate with R

Author: Julian Hillebrand,Maximilian H. Nierhoff

Publisher: Packt Publishing Ltd

ISBN: 1783982551

Category: Computers

Page: 348

View: 1211

Harness the power of RStudio to create web applications, R packages, markdown reports and pretty data visualizations About This Book Discover the multi-functional use of RStudio to support your daily work with R code Learn to create stunning, meaningful, and interactive graphs and learn to embed them into easy communicable reports using multiple R packages Develop your own R packages and Shiny web apps to share your knowledge and collaborate with others. Who This Book Is For This book is aimed at R developers and analysts who wish to do R statistical development while taking advantage of RStudio's functionality to ease their development efforts. R programming experience is assumed as well as being comfortable with R's basic structures and a number of functions. What You Will Learn Discover the RStudio IDE and details about the user interface Communicate your insights with R Markdown in static and interactive ways Learn how to use different graphic systems to visualize your data Build interactive web applications with the Shiny framework to present and share your results Understand the process of package development and assemble your own R packages Easily collaborate with other people on your projects by using Git and GitHub Manage the R environment for your organization with RStudio and Shiny server Apply your obtained knowledge about RStudio and R development to create a real-world dashboard solution In Detail RStudio helps you to manage small to large projects by giving you a multi-functional integrated development environment, combined with the power and flexibility of the R programming language, which is becoming the bridge language of data science for developers and analyst worldwide. Mastering the use of RStudio will help you to solve real-world data problems. This book begins by guiding you through the installation of RStudio and explaining the user interface step by step. From there, the next logical step is to use this knowledge to improve your data analysis workflow. We will do this by building up our toolbox to create interactive reports and graphs or even web applications with Shiny. To collaborate with others, we will explore how to use Git and GitHub with RStudio and how to build your own packages to ensure top quality results. Finally, we put it all together in an interactive dashboard written with R. Style and approach An easy-to-follow guide full of hands-on examples to master RStudio. Beginning from explaining the basics, each topic is explained with a lot of details for every feature.
Posted in Computers

Learning RStudio for R Statistical Computing

Author: Mark P. J. Van der Loo

Publisher: Packt Publishing Ltd

ISBN: 1782160612

Category: Computers

Page: 126

View: 2023

A practical tutorial covering how to leverage RStudio functionality to effectively perform R Development, analysis, and reporting with RStudio. The book is aimed at R developers and analysts who wish to do R statistical development while taking advantage of RStudio functionality to ease their development efforts. Familiarity with R is assumed. Those who want to get started with R development using RStudio will also find the book useful. Even if you already use R but want to create reproducible statistical analysis projects or extend R with self-written packages, this book shows how to quickly achieve this using RStudio.
Posted in Computers

Web Application Development with R using Shiny

Author: Chris Beeley

Publisher: Packt Publishing Ltd

ISBN: 178328448X

Category: Computers

Page: 110

View: 4226

This book follows a standard tutorial-based approach which will teach you how to make a web app using R and Shiny quickly and easily.This book is for anybody who wants to produce interactive data summaries over the Web, whether you want to share them with a few colleagues or the whole world. You need no previous experience with R, Shiny, HTML, or CSS to begin using this book, although you will need at least a little previous experience with programming in a different language.
Posted in Computers

RStudio for R Statistical Computing Cookbook

Author: Andrea Cirillo

Publisher: Packt Publishing Ltd

ISBN: 178439694X

Category: Computers

Page: 246

View: 3144

Over 50 practical and useful recipes to help you perform data analysis with R by unleashing every native RStudio feature About This Book 54 useful and practical tasks to improve working systems Includes optimizing performance and reliability or uptime, reporting, system management tools, interfacing to standard data ports, and so on Offers 10-15 real-life, practical improvements for each user type Who This Book Is For This book is targeted at R statisticians, data scientists, and R programmers. Readers with R experience who are looking to take the plunge into statistical computing will find this Cookbook particularly indispensable. What You Will Learn Familiarize yourself with the latest advanced R console features Create advanced and interactive graphics Manage your R project and project files effectively Perform reproducible statistical analyses in your R projects Use RStudio to design predictive models for a specific domain-based application Use RStudio to effectively communicate your analyses results and even publish them to a blog Put yourself on the frontiers of data science and data monetization in R with all the tools that are needed to effectively communicate your results and even transform your work into a data product In Detail The requirement of handling complex datasets, performing unprecedented statistical analysis, and providing real-time visualizations to businesses has concerned statisticians and analysts across the globe. RStudio is a useful and powerful tool for statistical analysis that harnesses the power of R for computational statistics, visualization, and data science, in an integrated development environment. This book is a collection of recipes that will help you learn and understand RStudio features so that you can effectively perform statistical analysis and reporting, code editing, and R development. The first few chapters will teach you how to set up your own data analysis project in RStudio, acquire data from different data sources, and manipulate and clean data for analysis and visualization purposes. You'll get hands-on with various data visualization methods using ggplot2, and you will create interactive and multidimensional visualizations with D3.js. Additional recipes will help you optimize your code; implement various statistical models to manage large datasets; perform text analysis and predictive analysis; and master time series analysis, machine learning, forecasting; and so on. In the final few chapters, you'll learn how to create reports from your analytical application with the full range of static and dynamic reporting tools that are available in RStudio so that you can effectively communicate results and even transform them into interactive web applications. Style and approach RStudio is an open source Integrated Development Environment (IDE) for the R platform. The R programming language is used for statistical computing and graphics, which RStudio facilitates and enhances through its integrated environment. This Cookbook will help you learn to write better R code using the advanced features of the R programming language using RStudio. Readers will learn advanced R techniques to compute the language and control object evaluation within R functions. Some of the contents are: Accessing an API with R Substituting missing values by interpolation Performing data filtering activities R Statistical implementation for Geospatial data Developing shiny add-ins to expand RStudio functionalities Using GitHub with RStudio Modelling a recommendation engine with R Using R Markdown for static and dynamic reporting Curating a blog through RStudio Advanced statistical modelling with R and RStudio
Posted in Computers

Getting Started with RStudio

An Integrated Development Environment for R

Author: John Verzani

Publisher: "O'Reilly Media, Inc."

ISBN: 1449317073

Category: Computers

Page: 98

View: 1485

Dive into the RStudio Integrated Development Environment (IDE) for using and programming R, the popular open source software for statistical computing and graphics. This concise book provides new and experienced users with an overview of RStudio, as well as hands-on instructions for analyzing data, generating reports, and developing R software packages. The open source RStudio IDE brings many powerful coding tools together into an intuitive, easy-to-learn interface. With this guide, you’ll learn how to use its main components—including the console, source code editor, and data viewer—through descriptions and case studies. Getting Started with RStudio serves as both a reference and introduction to this unique IDE. Use RStudio to provide enhanced support for interactive R sessions Clean and format raw data quickly with several RStudio components Edit R commands with RStudio’s code editor, and combine them into functions Easily locate and use more than 3,000 add-on packages in R’s CRAN service Develop and document your own R packages with the code editor and related components Create one-click PDF reports in RStudio with a mix of text and R output
Posted in Computers

Buddhist Epistemology

Author: Siddheswar Rameshwar Bhatt,Anu Mehrotra

Publisher: Greenwood Publishing Group

ISBN: 9780313310874

Category: History

Page: 140

View: 322

Provides a clear and exhaustive exposition of epistemology and logic in the Buddhist philosophical tradition.
Posted in History

R for Programmers

Mastering the Tools

Author: Dan Zhang

Publisher: CRC Press

ISBN: 1498736823

Category: Computers

Page: 354

View: 9958

Unlike other books about R, written from the perspective of statistics, R for Programmers: Mastering the Tools is written from the perspective of programmers, providing a channel for programmers with expertise in other programming languages to quickly understand R. The contents are divided into four sections: The first section consists of the basics of R, which explains the advantages of using R, the installation of different versions of R, and the 12 frequently used packages of R. This will help you understand the tool packages, time series packages, and performance monitoring packages of R quickly. The second section discusses the server of R, which examines the communication between R and other programming languages and the application of R as servers. This will help you integrate R with other programming languages and implement the server application of R. The third section discusses databases and big data, which covers the communication between R and various databases, as well as R’s integration with Hadoop. This will help you integrate R with the underlying level of other databases and implement the processing of big data by R, based on Hadoop. The fourth section comprises the appendices, which introduce the installation of Java, various databases, and Hadoop. Because this is a reference book, there is no special sequence for reading all the chapters. You can choose the chapters in which you have an interest. If you are new to R, and you wish to master R comprehensively, simply follow the chapters in sequence.
Posted in Computers

Learning Shiny

Author: Hernan G. Resnizky

Publisher: Packt Publishing Ltd

ISBN: 1785281992

Category: Computers

Page: 246

View: 4801

Make the most of R's dynamic capabilities and implement web applications with Shiny About This Book Present interactive data visualizations in R within the Shiny framework Construct web dashboards in a simple, intuitive, but fully flexible environment Apply your skills to create a real-world web application with this step-by-step guide Who This Book Is For If you are a data scientist who needs a platform to show your results to a broader audience in an attractive and visual way, or a web developer with no prior experience in R or Shiny, this is the book for you. What You Will Learn Comprehend many useful functions, such as lapply and apply, to process data in R Write and structure different files to create a basic dashboard Develop graphics in R using popular graphical libraries such as ggplot2 and GoogleVis Mount a dashboard on a Linux Server Integrate Shiny with non-R-native visualization, such as D3.js Design and build a web application In Detail R is nowadays one of the most used tools in data science. However, along with Shiny, it is also gaining territory in the web application world, due to its simplicity and flexibility. Shiny is a framework that enables the creation of interactive visualizations written entirely in R and can be displayed in almost any ordinary web browser. It is a package from RStudio, which is an IDE for R. From the fundamentals of R to the administration of multi-concurrent, fully customized web applications, this book explains how to achieve your desired web application in an easy and gradual way. You will start by learning about the fundamentals of R, and will move on to looking at simple and practical examples. These examples will enable you to grasp many useful tools that will assist you in solving the usual problems that can be faced when developing data visualizations. You will then walk through the integration of Shiny with R in general and view the different visualization possibilities out there. Finally, you will put your skills to the test and create your first web application! Style and approach This is a comprehensive, step-by-step guide that will allow you to learn and make full use of R and Shiny's capabilities in a gradual way, together with clear, applied examples.
Posted in Computers

R for Data Science

Import, Tidy, Transform, Visualize, and Model Data

Author: Hadley Wickham,Garrett Grolemund

Publisher: "O'Reilly Media, Inc."

ISBN: 1491910364

Category: Computers

Page: 520

View: 7291

Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way. You’ll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Posted in Computers

Data Manipulation with R

Author: Jaynal Abedin

Publisher: Packt Publishing Ltd

ISBN: 1783281103

Category: Computers

Page: 102

View: 3483

This book is a step-by step, example-oriented tutorial that will show both intermediate and advanced users how data manipulation is facilitated smoothly using R. This book is aimed at intermediate to advanced level users of R who want to perform data manipulation with R, and those who want to clean and aggregate data effectively. Readers are expected to have at least an introductory knowledge of R and some basic administration work in R, such as installing packages and calling them when required.
Posted in Computers

Hands-On Programming with R

Write Your Own Functions and Simulations

Author: Garrett Grolemund

Publisher: "O'Reilly Media, Inc."

ISBN: 1449359108

Category: Computers

Page: 250

View: 3665

Learn how to program by diving into the R language, and then use your newfound skills to solve practical data science problems. With this book, you’ll learn how to load data, assemble and disassemble data objects, navigate R’s environment system, write your own functions, and use all of R’s programming tools. RStudio Master Instructor Garrett Grolemund not only teaches you how to program, but also shows you how to get more from R than just visualizing and modeling data. You’ll gain valuable programming skills and support your work as a data scientist at the same time. Work hands-on with three practical data analysis projects based on casino games Store, retrieve, and change data values in your computer’s memory Write programs and simulations that outperform those written by typical R users Use R programming tools such as if else statements, for loops, and S3 classes Learn how to write lightning-fast vectorized R code Take advantage of R’s package system and debugging tools Practice and apply R programming concepts as you learn them
Posted in Computers

Jumpstart Tableau

A Step-By-Step Guide to Better Data Visualization

Author: Arshad Khan

Publisher: Apress

ISBN: 1484219341

Category: Computers

Page: 386

View: 1248

Learn how to create powerful data visualizations easily and quickly. You will develop reports and queries, and perform data analysis. Jumpstart Tableau covers the basic reporting and analysis functions that most BI users perform in their day-to-day work. These include connecting to a data source, working with dimensions and measures, developing reports and charts, saving workbooks, filtering, swapping, sorting, formatting, grouping, creating hierarchies, forecasting, exporting, distributing, as well developing various chart types. Each exercise in Jumpstart Tableau provides screenshots that cover every step from start to finish. The exercises are based on a comprehensive sample Excel-based data source that Tableau Software (version 9) has provided, which makes it very easy to duplicate the exercises on the real software. This book teaches you to: Execute each function in a step-by-step manner Work up to more advanced and complex Tableau functionality Integrate individual development of content, such as tables/charts and visualizations., onto a dashboard for an effective presentation What You'll Learn Connect to data sources Develop reports Create visualizations Perform analysis functions (e.g., filtering, drilldown, sorting, grouping, forecasting, etc.) Save visualizations in different formats and distribute them Develop dashboards and their content Who This Book Is For Novice Tableau users, BI end users, as well as developers and business analysts. Also, students in university courses on dashboards and data visualization as well as BI and data analysis can quickly get up to speed with Tableau tools and use them for implementing the hands-on projects associated with these courses. “/div> div
Posted in Computers

Data Mining Applications with R

Author: Yanchang Zhao,Yonghua Cen

Publisher: Academic Press

ISBN: 0124115209

Category: Computers

Page: 514

View: 5930

Data Mining Applications with R is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many different industries, including government, finance, insurance, medicine, scientific research and more. This book presents 15 different real-world case studies illustrating various techniques in rapidly growing areas. It is an ideal companion for data mining researchers in academia and industry looking for ways to turn this versatile software into a powerful analytic tool. R code, Data and color figures for the book are provided at the RDataMining.com website. Helps data miners to learn to use R in their specific area of work and see how R can apply in different industries Presents various case studies in real-world applications, which will help readers to apply the techniques in their work Provides code examples and sample data for readers to easily learn the techniques by running the code by themselves
Posted in Computers

Unsupervised Learning with R

Author: Erik Rodriguez Pacheco

Publisher: Packt Publishing Ltd

ISBN: 1785885812

Category: Computers

Page: 192

View: 4212

Work with over 40 packages to draw inferences from complex datasets and find hidden patterns in raw unstructured data About This Book Unlock and discover how to tackle clusters of raw data through practical examples in R Explore your data and create your own models from scratch Analyze the main aspects of unsupervised learning with this comprehensive, practical step-by-step guide Who This Book Is For This book is intended for professionals who are interested in data analysis using unsupervised learning techniques, as well as data analysts, statisticians, and data scientists seeking to learn to use R to apply data mining techniques. Knowledge of R, machine learning, and mathematics would help, but are not a strict requirement. What You Will Learn Load, manipulate, and explore your data in R using techniques for exploratory data analysis such as summarization, manipulation, correlation, and data visualization Transform your data by using approaches such as scaling, re-centering, scale [0-1], median/MAD, natural log, and imputation data Build and interpret clustering models using K-Means algorithms in R Build and interpret clustering models by Hierarchical Clustering Algorithm's in R Understand and apply dimensionality reduction techniques Create and use learning association rules models, such as recommendation algorithms Use and learn about the techniques of feature selection Install and use end-user tools as an alternative to programming directly in the R console In Detail The R Project for Statistical Computing provides an excellent platform to tackle data processing, data manipulation, modeling, and presentation. The capabilities of this language, its freedom of use, and a very active community of users makes R one of the best tools to learn and implement unsupervised learning. If you are new to R or want to learn about unsupervised learning, this book is for you. Packed with critical information, this book will guide you through a conceptual explanation and practical examples programmed directly into the R console. Starting from the beginning, this book introduces you to unsupervised learning and provides a high-level introduction to the topic. We quickly move on to discuss the application of key concepts and techniques for exploratory data analysis. The book then teaches you to identify groups with the help of clustering methods or building association rules. Finally, it provides alternatives for the treatment of high-dimensional datasets, as well as using dimensionality reduction techniques and feature selection techniques. By the end of this book, you will be able to implement unsupervised learning and various approaches associated with it in real-world projects. Style and approach This book takes a step-by-step approach to unsupervised learning concepts and tools, explained in a conversational and easy-to-follow style. Each topic is explained sequentially, explaining the theory and then putting it into practice by using specialized R packages for each topic.
Posted in Computers

Mastering Machine Learning with R

Author: Cory Lesmeister

Publisher: Packt Publishing Ltd

ISBN: 1787284484

Category: Computers

Page: 420

View: 5728

Master machine learning techniques with R to deliver insights in complex projects About This Book Understand and apply machine learning methods using an extensive set of R packages such as XGBOOST Understand the benefits and potential pitfalls of using machine learning methods such as Multi-Class Classification and Unsupervised Learning Implement advanced concepts in machine learning with this example-rich guide Who This Book Is For This book is for data science professionals, data analysts, or anyone with a working knowledge of machine learning, with R who now want to take their skills to the next level and become an expert in the field. What You Will Learn Gain deep insights into the application of machine learning tools in the industry Manipulate data in R efficiently to prepare it for analysis Master the skill of recognizing techniques for effective visualization of data Understand why and how to create test and training data sets for analysis Master fundamental learning methods such as linear and logistic regression Comprehend advanced learning methods such as support vector machines Learn how to use R in a cloud service such as Amazon In Detail This book will teach you advanced techniques in machine learning with the latest code in R 3.3.2. You will delve into statistical learning theory and supervised learning; design efficient algorithms; learn about creating Recommendation Engines; use multi-class classification and deep learning; and more. You will explore, in depth, topics such as data mining, classification, clustering, regression, predictive modeling, anomaly detection, boosted trees with XGBOOST, and more. More than just knowing the outcome, you'll understand how these concepts work and what they do. With a slow learning curve on topics such as neural networks, you will explore deep learning, and more. By the end of this book, you will be able to perform machine learning with R in the cloud using AWS in various scenarios with different datasets. Style and approach The book delivers practical and real-world solutions to problems and a variety of tasks such as complex recommendation systems. By the end of this book, you will have gained expertise in performing R machine learning and will be able to build complex machine learning projects using R and its packages.
Posted in Computers

Predictive Analytics Using Rattle and Qlik Sense

Author: Ferran Garcia Pagans

Publisher: Packt Publishing Ltd

ISBN: 178439078X

Category: Computers

Page: 242

View: 8314

Qlik Sense Desktop, the personal and free version of Qlik Sense, is a powerful tool for business analysts to analyze data and create useful data applications. Rattle, developed in R, is a GUI used for data mining and complements Qlik Sense Desktop very well. By combining Rattle and Qlik Sense Desktop, a business user can learn how to apply predictive analytics to create real-world data applications. The objective is to use Qlik Sense to analyze data and complement it with predictive analytics using Rattle. This book will introduce you to basic predictive analysis techniques using Rattle and basic data visualizations concepts using Qlik Sense Desktop. You will start by setting up Qlik Sense Desktop, R, and Rattle and learn the basic of these tools. Then this book will examine the data and make it ready to be analyzed. After that, you will get to know the key concepts of predictive analytics, by building simple models with Rattle and creating visualizations with Qlik Sense Desktop. Finally, the book will show you the basics of data visualization and will help you to create your first data application and dashboard.
Posted in Computers

Machine Learning with R Cookbook

Analyze data and build predictive models

Author: AshishSingh Bhatia,Yu-Wei, Chiu (David Chiu)

Publisher: Packt Publishing Ltd

ISBN: 1787287807

Category: Computers

Page: 572

View: 5999

Explore over 110 recipes to analyze data and build predictive models with simple and easy-to-use R code About This Book Apply R to simplify predictive modeling with short and simple code Use machine learning to solve problems ranging from small to big data Build a training and testing dataset, applying different classification methods. Who This Book Is For This book is for data science professionals, data analysts, or people who have used R for data analysis and machine learning who now wish to become the go-to person for machine learning with R. Those who wish to improve the efficiency of their machine learning models and need to work with different kinds of data set will find this book very insightful. What You Will Learn Create and inspect transaction datasets and perform association analysis with the Apriori algorithm Visualize patterns and associations using a range of graphs and find frequent item-sets using the Eclat algorithm Compare differences between each regression method to discover how they solve problems Detect and impute missing values in air quality data Predict possible churn users with the classification approach Plot the autocorrelation function with time series analysis Use the Cox proportional hazards model for survival analysis Implement the clustering method to segment customer data Compress images with the dimension reduction method Incorporate R and Hadoop to solve machine learning problems on big data In Detail Big data has become a popular buzzword across many industries. An increasing number of people have been exposed to the term and are looking at how to leverage big data in their own businesses, to improve sales and profitability. However, collecting, aggregating, and visualizing data is just one part of the equation. Being able to extract useful information from data is another task, and a much more challenging one. Machine Learning with R Cookbook, Second Edition uses a practical approach to teach you how to perform machine learning with R. Each chapter is divided into several simple recipes. Through the step-by-step instructions provided in each recipe, you will be able to construct a predictive model by using a variety of machine learning packages. In this book, you will first learn to set up the R environment and use simple R commands to explore data. The next topic covers how to perform statistical analysis with machine learning analysis and assess created models, covered in detail later on in the book. You'll also learn how to integrate R and Hadoop to create a big data analysis platform. The detailed illustrations provide all the information required to start applying machine learning to individual projects. With Machine Learning with R Cookbook, machine learning has never been easier. Style and approach This is an easy-to-follow guide packed with hands-on examples of machine learning tasks. Each topic includes step-by-step instructions on tackling difficulties faced when applying R to machine learning.
Posted in Computers

Git in Practice

Includes 66 Techniques

Author: Mike Mcquaid

Publisher: Createspace Independent Publishing Platform

ISBN: 9781548942458

Category:

Page: 60

View: 8998

Are you looking for a new version control system? Perhaps what you're using now is too cumbersome, or you just want to try something new to manage a pet project. With Git by Ryan Hodson, you can get up and running with one of the fastest-spreading revision control systems out there. Complete with vivid diagrams, clear code samples, and a careful walk-through of primary features, this free e-book is your quick guide to how Git operates, what its advantages are, and how you can incorporate it into your own workflow. This updated and expanded second edition of Book provides a user-friendly introduction to the subject, Taking a clear structural framework, it guides the reader through the subject's core elements. A flowing writing style combines with the use of illustrations and diagrams throughout the text to ensure the reader understands even the most complex of concepts. This succinct and enlightening overview is a required reading for all those interested in the subject . We hope you find this book useful in shaping your future career & Business.
Posted in

3D Printing for Architects with MakerBot

Author: Matthew B. Stokes

Publisher: Packt Publishing Ltd

ISBN: 1783550767

Category: Computers

Page: 108

View: 2863

This is a hands-on tutorial for a user to become well-versed with 3D printing using MakerBots."3D Printing for Architects with MakerBot" is ideal for architects looking to creating stunning prototypes using the MakerBot Replicator 2X 3D printer. Having experience using 3D CAD software is beneficial but not necessary as this book mentions several different CAD packages for beginners, up to those more advanced users who are perhaps looking for additional features.
Posted in Computers

The Practice of Enterprise Modeling

10th IFIP WG 8.1. Working Conference, PoEM 2017, Leuven, Belgium, November 22-24, 2017, Proceedings

Author: Geert Poels,Frederik Gailly,Estefania Serral Asensio,Monique Snoeck

Publisher: Springer

ISBN: 3319702416

Category: Computers

Page: 363

View: 5901

This volume constitutes the proceedings of the 10th IFIP WG 8.1 Conference on the Practice of Enterprise Modeling held in November 2017 in Leuven, Belgium. The conference was created by the International Federation for Information Processing (IFIP) Working Group 8.1 to offer a forum for knowledge transfer and experience sharing between the academic and practitioner communities. The 20 full papers and 4 short papers accepted were carefully reviewed and selected from 70 submissions. They include research results, practitioner/experience reports and work-in-progress papers and were presented in 8 sessions covering diverse topics related to enterprise modelling and its application in practice.
Posted in Computers