Linear Accelerators for Radiation Therapy, Second Edition

Author: David Greene,P.C Williams

Publisher: CRC Press

ISBN: 9780750304764

Category: Science

Page: 286

View: 810

Linear Accelerators for Radiation Therapy, Second Edition focuses on the fundamentals of accelerator systems, explaining the underlying physics and the different features of these systems. This edition includes expanded sections on the treatment head, on x-ray production via multileaf and dynamic collimation for the production of wedged and other intensity modulated beams, on electron scattering systems, and on dosimetry. With high-quality illustrations and practical examples throughout, it contains a detailed description of electron beam optics and linear accelerator components. The final chapter explains how to use other equipment, such as scanners and simulators, in conjunction with linear accelerators for optimum treatment of cancers.
Posted in Science

Proton Therapy Physics

Author: Harald Paganetti

Publisher: CRC Press

ISBN: 1439836450

Category: Medical

Page: 704

View: 6629

Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also examines computerized treatment plan optimization, methods for in vivo dose or beam range verification, the safety of patients and operating personnel, and the biological implications of using protons from a physics perspective. The final chapter illustrates the use of risk models for common tissue complications in treatment optimization. Along with exploring quality assurance issues and biological considerations, this practical guide collects the latest clinical studies on the use of protons in treatment planning and radiation monitoring. Suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, the book helps readers understand the uncertainties and limitations of precisely shaped dose distribution.
Posted in Medical

A Primer on Theory and Operation of Linear Accelerators in Radiation Therapy

Author: C. J. Karzmark,Robert J. Morton

Publisher: N.A

ISBN: 9781930524965

Category:

Page: 56

View: 7385

By the mid-1950s, a linear accelerator suitable for treating deep-seated tumors was built in the Stanford Microwave Laboratory and installed at Stanford Hospital. It served as a prototype for commercial units that were built later. Since that time, medical linear accelerators gained in popularity as major radiation therapy devices, but few basic training materials on their operation had been produced for use by medical professionals. C.J. Karzmark, a radiological physicist at Stanford University, was involved with medical linacs since their development, and he agreed to collaborate with Robert Morton of the Center for Devices and Radiological Health (formerly the Bureau of Radiological Health), U.S. Food and Drug Administration, in writing the first edition of this primer.
Posted in

Radiation Physics for Medical Physicists

Author: Ervin B. Podgorsak

Publisher: Springer

ISBN: 3319253824

Category: Science

Page: 906

View: 1026

This textbook summarizes the basic knowledge of atomic, nuclear, and radiation physics that professionals working in medical physics and biomedical engineering need for efficient and safe use of ionizing radiation in medicine. Concentrating on the underlying principles of radiation physics, the textbook covers the prerequisite knowledge for medical physics courses on the graduate and post-graduate levels in radiotherapy physics, radiation dosimetry, imaging physics, and health physics, thus providing the link between elementary undergraduate physics and the intricacies of four medical physics specialties: diagnostic radiology physics, nuclear medicine physics, radiation oncology physics, and health physics. To recognize the importance of radiation dosimetry to medical physics three new chapters have been added to the 14 chapters of the previous edition. Chapter 15 provides a general introduction to radiation dosimetry. Chapter 16 deals with absolute radiation dosimetry systems that establish absorbed dose or some other dose related quantity directly from the signal measured by the dosimeter. Three absolute dosimetry techniques are known and described in detail: (i) calorimetric; (ii) chemical (Fricke), and (iii) ionometric. Chapter 17 deals with relative radiation dosimetry systems that rely on a previous dosimeter calibration in a known radiation field. Many relative radiation dosimetry systems have been developed to date and four most important categories used routinely in medicine and radiation protection are described in this chapter: (i) Ionometric dosimetry; (ii) Luminescence dosimetry; (iii) Semiconductor dosimetry; and (iv) Film dosimetry. The book is intended as a textbook for a radiation physics course in academic medical physics graduate programs as well as a reference book for candidates preparing for certification examinations in medical physics sub-specialties. It may also be of interest to many professionals, not only physicists, who in their daily occupations deal with various aspects of medical physics or radiation physics and have a need or desire to improve their understanding of radiation physics.
Posted in Science

Tutorials in Radiotherapy Physics

Advanced Topics with Problems and Solutions

Author: Patrick N. McDermott

Publisher: CRC Press

ISBN: 148225168X

Category: Medical

Page: 320

View: 3287

The Topics Every Medical Physicist Should Know Tutorials in Radiotherapy Physics: Advanced Topics with Problems and Solutions covers selected advanced topics that are not thoroughly discussed in any of the standard medical physics texts. The book brings together material from a large variety of sources, avoiding the need for you to search through and digest the vast research literature. The topics are mathematically developed from first principles using consistent notation. Clear Derivations and In-Depth Explanations The book offers insight into the physics of electron acceleration in linear accelerators and presents an introduction to the study of proton therapy. It then describes the predominant method of clinical photon dose computation: convolution and superposition dose calculation algorithms. It also discusses the Boltzmann transport equation, a potentially fast and accurate method of dose calculation that is an alternative to the Monte Carlo method. This discussion considers Fermi–Eyges theory, which is widely used for electron dose calculations. The book concludes with a step-by-step mathematical development of tumor control and normal tissue complication probability models. Each chapter includes problems with solutions given in the back of the book. Prepares You to Explore Cutting-Edge Research This guide provides you with the foundation to read review articles on the topics. It can be used for self-study, in graduate medical physics and physics residency programs, or in vendor training for linacs and treatment planning systems.
Posted in Medical

World Congress on Medical Physics and Biomedical Engineering September 7 - 12, 2009 Munich, Germany

Vol. 25/I Radiation Oncology

Author: Olaf Dössel,Wolfgang C. Schlegel

Publisher: Springer Science & Business Media

ISBN: 9783642034749

Category: Technology & Engineering

Page: 1084

View: 2052

Present Your Research to the World! The World Congress 2009 on Medical Physics and Biomedical Engineering – the triennial scientific meeting of the IUPESM - is the world’s leading forum for presenting the results of current scientific work in health-related physics and technologies to an international audience. With more than 2,800 presentations it will be the biggest conference in the fields of Medical Physics and Biomedical Engineering in 2009! Medical physics, biomedical engineering and bioengineering have been driving forces of innovation and progress in medicine and healthcare over the past two decades. As new key technologies arise with significant potential to open new options in diagnostics and therapeutics, it is a multidisciplinary task to evaluate their benefit for medicine and healthcare with respect to the quality of performance and therapeutic output. Covering key aspects such as information and communication technologies, micro- and nanosystems, optics and biotechnology, the congress will serve as an inter- and multidisciplinary platform that brings together people from basic research, R&D, industry and medical application to discuss these issues. As a major event for science, medicine and technology the congress provides a comprehensive overview and in–depth, first-hand information on new developments, advanced technologies and current and future applications. With this Final Program we would like to give you an overview of the dimension of the congress and invite you to join us in Munich! Olaf Dössel Congress President Wolfgang C.
Posted in Technology & Engineering

Medical Electron Accelerators

Author: C. J. Karzmark,Craig S. Nunan,Eiji Tanabe

Publisher: McGraw-Hill

ISBN: N.A

Category: Medical

Page: 316

View: 1121

Organized to serve as a ready reference, this book covers the design & principles of operation of microwave electron linear accelerators for the radiation treatment of cancer. Designed for use by persons without extensive knowledge & experience of accelerator technology, the book assumes a knowledge of elementary physics & mathematics & places its emphasis on how accelerators actually function & how they are used in cancer treatment. Coverage includes the history of development & application, general theory of acceleration, accelerator systems, radiation beam systems & associated equipment, performance characteristics, testing & use. The major modules of a representative medical accelerator are described, including principles of operation & how these models function collectively to produce electron & X-ray beams for radiotherapy.
Posted in Medical

Medical Physics and Biomedical Engineering

Author: B.H Brown,R.H Smallwood,D.C. Barber,P.V Lawford,D.R Hose

Publisher: CRC Press

ISBN: 1351991817

Category: Medical

Page: 768

View: 7413

Medical Physics and Biomedical Engineering provides broad coverage appropriate for senior undergraduates and graduates in medical physics and biomedical engineering. Divided into two parts, the first part presents the underlying physics, electronics, anatomy, and physiology and the second part addresses practical applications. The structured approach means that later chapters build and broaden the material introduced in the opening chapters; for example, students can read chapters covering the introductory science of an area and then study the practical application of the topic. Coverage includes biomechanics; ionizing and nonionizing radiation and measurements; image formation techniques, processing, and analysis; safety issues; biomedical devices; mathematical and statistical techniques; physiological signals and responses; and respiratory and cardiovascular function and measurement. Where necessary, the authors provide references to the mathematical background and keep detailed derivations to a minimum. They give comprehensive references to junior undergraduate texts in physics, electronics, and life sciences in the bibliographies at the end of each chapter.
Posted in Medical

Proton and Carbon Ion Therapy

Author: C-M Charlie Ma,Tony Lomax

Publisher: CRC Press

ISBN: 1439816077

Category: Science

Page: 250

View: 4467

Proton and Carbon Ion Therapy is an up-to-date guide to using proton and carbon ion therapy in modern cancer treatment. The book covers the physics and radiobiology basics of proton and ion beams, dosimetry methods and radiation measurements, and treatment delivery systems. It gives practical guidance on patient setup, target localization, and treatment planning for clinical proton and carbon ion therapy. The text also offers detailed reports on the treatment of pediatric cancers, lymphomas, and various other cancers. After an overview, the book focuses on the fundamental aspects of proton and carbon ion therapy equipment, including accelerators, gantries, and delivery systems. It then discusses dosimetry, biology, imaging, and treatment planning basics and provides clinical guidelines on the use of proton and carbon ion therapy for the treatment of specific cancers. Suitable for anyone involved with medical physics and radiation therapy, this book offers a balanced and critical assessment of state-of-the-art technologies, major challenges, and the future outlook of proton and carbon ion therapy. It presents a thorough introduction for those new to the field while providing a helpful, up-to-date reference for readers already using the therapy in clinical settings.
Posted in Science

World Congress on Medical Physics and Biomedical Engineering September 7 - 12, 2009 Munich, Germany

Vol. 25/III Radiation Protection and Dosimetry, Biological Effects of Radiation

Author: Olaf Dössel,Wolfgang C. Schlegel

Publisher: Springer Science & Business Media

ISBN: 3642039022

Category: Technology & Engineering

Page: 694

View: 6653

Present Your Research to the World! The World Congress 2009 on Medical Physics and Biomedical Engineering – the triennial scientific meeting of the IUPESM - is the world’s leading forum for presenting the results of current scientific work in health-related physics and technologies to an international audience. With more than 2,800 presentations it will be the biggest conference in the fields of Medical Physics and Biomedical Engineering in 2009! Medical physics, biomedical engineering and bioengineering have been driving forces of innovation and progress in medicine and healthcare over the past two decades. As new key technologies arise with significant potential to open new options in diagnostics and therapeutics, it is a multidisciplinary task to evaluate their benefit for medicine and healthcare with respect to the quality of performance and therapeutic output. Covering key aspects such as information and communication technologies, micro- and nanosystems, optics and biotechnology, the congress will serve as an inter- and multidisciplinary platform that brings together people from basic research, R&D, industry and medical application to discuss these issues. As a major event for science, medicine and technology the congress provides a comprehensive overview and in–depth, first-hand information on new developments, advanced technologies and current and future applications. With this Final Program we would like to give you an overview of the dimension of the congress and invite you to join us in Munich! Olaf Dössel Congress President Wolfgang C.
Posted in Technology & Engineering

Quality and Safety in Radiotherapy

Author: Todd Pawlicki,Peter Dunscombe,Arno J. Mundt,Pierre Scalliet

Publisher: CRC Press

ISBN: 9781439804377

Category: Medical

Page: 643

View: 6811

The first text to focus solely on quality and safety in radiotherapy, this work encompasses not only traditional, more technically oriented, quality assurance activities, but also general approaches of quality and safety. It includes contributions from experts both inside and outside the field to present a global view. The task of assuring quality is no longer viewed solely as a technical, equipment-dependent endeavor. Instead, it is now recognized as depending on both the processes and the people delivering the service. Divided into seven broad categories, the text covers: Quality Management and Improvement includes discussions about lean thinking, process control, and access to services. Patient Safety and Managing Error looks at reactive and prospective error management techniques. Methods to Assure and Improve Quality deals broadly with techniques to monitor, assure, and improve quality. People and Quality focuses on human factors, changing roles, staffing, and training. Quality Assurance in Radiotherapy addresses the general issues of quality assurance with descriptions of the key systems used to plan and treat patients and includes specific recommendations on the types and frequencies of certain tests. Quality Control: Equipment and Quality Control: Patient-Specific provides explicit details of quality control relating to equipment and patient-specific issues. Recently, a transformation of quality and safety in radiotherapy has begun to take place. Among the key drivers of this transformation have been new industrial and systems engineering approaches that have come to the forefront in recent years following revelations of system failures. This book provides an approach to quality that is long needed, one that deals with both human and technical aspects that must be the part of any overall quality improvement program.
Posted in Medical

Advances in Particle Therapy

A Multidisciplinary Approach

Author: Manjit Dosanjh,Jacques Bernier

Publisher: CRC Press

ISBN: 1351662333

Category: Science

Page: 282

View: 1262

Hadron therapy is a groundbreaking new method of treating cancer. Boasting greater precision than other therapies, this therapy is now utilised in many clinical settings and the field is growing. More than 50 medical facilities currently perform (or are planned to perform) this treatment, with this number set to double by 2020. This new text covers the most recent advances in hadron therapy, exploring the physics, technology, biology, diagnosis, clinical applications, and economics behind the therapy. Providing essential and up-to-date information on recent developments in the field, this book will be of interest to current and aspiring specialists from a wide range of backgrounds.
Posted in Science

Intensity-Modulated Radiation Therapy

Author: S. Webb

Publisher: CRC Press

ISBN: 1420034111

Category: Science

Page: 454

View: 354

Clinical conformal radiotherapy is the holy grail of radiation treatment and is now becoming a reality through the combined efforts of physical scientists and engineers, who have improved the physical basis of radiotherapy, and the interest and concern of imaginative radiotherapists and radiographers. Intensity-Modulated Radiation Therapy describes in detail the physics germane to the development of a particular form of clinical conformal radiotherapy called intensity modulated radiation therapy (IMRT). IMRT has become a topic of tremendous importance in recent years and is now being seriously investigated for its potential to improve the outcome of radiation therapy. The book collates the state-of-the-art literature together with the author's personal research experience and that of colleagues in the field to produce a text suitable for new research workers, Ph.D. students, and practicing radiation physicists that require a thorough introduction to IMRT. Fully illustrated, indexed, and referenced, the book has been prepared in a form suitable for supporting a teaching course.
Posted in Science

Minimally Invasive Medical Technology

Author: John G. Webster

Publisher: CRC Press

ISBN: 1420033913

Category: Science

Page: 334

View: 4851

Minimally invasive medicine has the goal of providing health care with minimal trauma. When minimally invasive surgery is utilized, it reduces the length of hospital stays, lowers costs, lowers pain, and reduces blood loss. Other minimally invasive techniques minimize radiation exposure, tissue damage, and drug side effects. Collecting contributions from workers in various fields within the sphere of minimally invasive medical technology, this book provides essential information for those involved with researching, designing, and using minimally invasive devices and systems. It emphasizes the technology required to accomplish minimally invasive medicine. The book will be of interest to biomedical engineers, medical physicists, and health care providers who want to know the technical workings of their devices and instruments.
Posted in Science

The Physics of Three Dimensional Radiation Therapy

Conformal Radiotherapy, Radiosurgery and Treatment Planning

Author: S. Webb

Publisher: CRC Press

ISBN: 9781420050363

Category: Science

Page: 388

View: 8482

The Physics of Three Dimensional Radiation Therapy presents a broad study of the use of three-dimensional techniques in radiation therapy. These techniques are used to specify the target volume precisely and deliver radiation with precision to minimize damage to surrounding healthy tissue. The book discusses multimodality computed tomography, complex treatment planning software, advanced collimation techniques, proton radiotherapy, megavoltage imaging, and stereotactic radiosurgery. A review of the literature, numerous questions, and many illustrations make this book suitable for teaching a course. The themes covered in this book are developed and expanded in Webb's The Physics of Conformal Radiotherapy and the two may be used together or in successive semesters for teaching purposes.
Posted in Science

The Physics of Radiotherapy X-rays and Electrons

Author: Peter Metcalfe,Tomas Kron,Peter Hoban

Publisher: Medical Physics Publishing Corporation

ISBN: 9781930524354

Category: Medical

Page: 905

View: 6165

The Physics of Radiotherapy X-Rays and Electrons is an updated successor to The Physics of Radiotherapy X-Rays from Linear Accelerators published in 1997. This new volume includes a significant amount of new material, including new chapters on electrons in radiotherapy and IMRT, IGRT, and tomotherapy, which have become key developments in radiation therapy. Also updated from the earlier edition are the physics beam modeling chapters, including Monte Carlo methods, adding those mysterious electrons, as well as discourse on radiobiological modeling including TCP, NTCP, and EUD and the impact of these concepts on plan analysis and inverse planning. This book is intended as a standard reference text for postgraduate radiation oncology medical physics students. It will also be of interest to radiation oncology registrars and residents, dosimetrists, and radiation therapists. The new text contains review questions at the end of each chapter and full bibliographic entries. Fully indexed. Selected questions and answers from The Q Book, The Physics of Radiotherapy X-Rays: Problems and Solutions are updated and integrated into the text.
Posted in Medical

Practical Radiotherapy Planning Fourth Edition

Author: Ann Barrett,Jane Dobbs,Tom Roques

Publisher: CRC Press

ISBN: 0340927739

Category: Medical

Page: 432

View: 465

Planning is a critical stage of radiotherapy. Careful consideration of the complex variables involved and critical assessment of the techniques available are fundamental to good and effective practice. First published in 1985, Practical Radiotherapy Planning has, over three editions, established itself as the popular choice for the trainee raditation oncologist and radiographer, providing the 'nuts and bolts' of planning in a practical and accessible manner. This fourth edition encompasses a wealth of new material, reflecting the radical change in the practice of radiotherapy in recent years. The information contained within the introductory chapters has been expanded and brought up to date, and a new chapter on patient management has been added. CT stimulators, MLC shieldings and dose profiles, principles of IMRT, and use of MRI, PET and ultrasound are all included, amongst other new developments in this field. The aim of the book remains unchanged. Complexity of treatment planning has increased greatly, but the fourth edition continues to emphasise underlying principles of treatment that can be applied for conventional, conformal and novel treatments, taking into account advances in imaging and treatment delivery.
Posted in Medical

Compendium to Radiation Physics for Medical Physicists

300 Problems and Solutions

Author: Ervin B. Podgorsak

Publisher: Springer Science & Business Media

ISBN: 3642201865

Category: Science

Page: 1148

View: 1969

This exercise book contains 300 typical problems and exercises in modern physics and radiation physics with complete solutions, detailed equations and graphs. This textbook is linked directly with the textbook "Radiation Physics for Medical Physicists", Springer (2010) but can also be used in combination with other related textbooks. For ease of use, this textbook has exactly the same organizational layout (14 chapters, 128 sections) as the "Radiation Physics for Medical Physicists" textbook and each section is covered by at least one problem with solution given. Equations, figures and tables are cross-referenced between the two books. It is the only large compilation of textbook material and associated solved problems in medical physics, radiation physics, and biophysics.
Posted in Science

Physics and Engineering of Radiation Detection

Author: Syed Naeem Ahmed

Publisher: Elsevier

ISBN: 0128016442

Category: Science

Page: 784

View: 4368

Physics and Engineering of Radiation Detection presents an overview of the physics of radiation detection and its applications. It covers the origins and properties of different kinds of ionizing radiation, their detection and measurement, and the procedures used to protect people and the environment from their potentially harmful effects. The second edition is fully revised and provides the latest developments in detector technology and analyses software. Also, more material related to measurements in particle physics and a complete solutions manual have been added. Discusses the experimental techniques and instrumentation used in different detection systems in a very practical way without sacrificing the physics content Provides useful formulae and explains methodologies to solve problems related to radiation measurements Contains many worked-out examples and end-of-chapter problems Detailed discussions on different detection media, such as gases, liquids, liquefied gases, semiconductors, and scintillators Chapters on statistics, data analysis techniques, software for data analysis, and data acquisition systems
Posted in Science

Beam’s Eye View Imaging in Radiation Oncology

Author: Ross I. Berbeco, Ph.D.

Publisher: CRC Press

ISBN: 1351647245

Category: Science

Page: 242

View: 1546

This first dedicated overview for beam’s eye view (BEV) covers instrumentation, methods, and clinical use of this exciting technology, which enables real-time anatomical imaging. It highlights how the information collected (e.g., the shape and size of the beam aperture and intensity of the beam) is used in the clinic for treatment verification, adaptive radiotherapy, and in-treatment interventions. The chapters cover detector construction and components, common imaging procedures, and state of the art applications. The reader will also be presented with emerging innovations, including target modifications, real-time tracking, reconstructing delivered dose, and in vivo portal dosimetry. Ross I. Berbeco, PhD, is a board-certified medical physicist and Associate Professor of Radiation Oncology at the Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School.
Posted in Science