Author: Günter M. Ziegler

Publisher: Springer Science & Business Media

ISBN: 9780387943657

Category: Mathematics

Page: 370

View: 9400

Skip to content
#
Search Results for: lectures-on-polytopes-graduate-texts-in-mathematics

## Lectures on Polytopes

Based on a graduate course at the Technische Universität, Berlin, this book presents a wealth of material on the modern theory of convex polytopes. With linear algebra as a prerequisite, the text moves quickly from the basics to topics of recent research.
## An Introduction to Convex Polytopes

The aim of this book is to introduce the reader to the fascinating world of convex polytopes. The highlights of the book are three main theorems in the combinatorial theory of convex polytopes, known as the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. All the background information on convex sets and convex polytopes which is m~eded to under stand and appreciate these three theorems is developed in detail. This background material also forms a basis for studying other aspects of polytope theory. The Dehn-Sommerville Relations are classical, whereas the proofs of the Upper Bound Theorem and the Lower Bound Theorem are of more recent date: they were found in the early 1970's by P. McMullen and D. Barnette, respectively. A famous conjecture of P. McMullen on the charac terization off-vectors of simplicial or simple polytopes dates from the same period; the book ends with a brief discussion of this conjecture and some of its relations to the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. However, the recent proofs that McMullen's conditions are both sufficient (L. J. Billera and C. W. Lee, 1980) and necessary (R. P. Stanley, 1980) go beyond the scope of the book. Prerequisites for reading the book are modest: standard linear algebra and elementary point set topology in [R1d will suffice.
## Gröbner Bases and Convex Polytopes

This book is about the interplay of computational commutative algebra and the theory of convex polytopes. It centers around a special class of ideals in a polynomial ring: the class of toric ideals. They are characterized as those prime ideals that are generated by monomial differences or as the defining ideals of toric varieties (not necessarily normal). The interdisciplinary nature of the study of Grobner bases is reflected by the specific applications appearing in this book. These applications lie in the domains of integer programming and computational statistics. The mathematical tools presented in the volume are drawn from commutative algebra, combinatorics, and polyhedral geometry.
## Lectures on Discrete Geometry

The main topics in this introductory text to discrete geometry include basics on convex sets, convex polytopes and hyperplane arrangements, combinatorial complexity of geometric configurations, intersection patterns and transversals of convex sets, geometric Ramsey-type results, and embeddings of finite metric spaces into normed spaces. In each area, the text explains several key results and methods.
## Combinatorics of Coxeter Groups

Includes a rich variety of exercises to accompany the exposition of Coxeter groups Coxeter groups have already been exposited from algebraic and geometric perspectives, but this book will be presenting the combinatorial aspects of Coxeter groups
## Matroid Theory

This volume contains the proceedings of the 1995 AMS-IMS-SIAM Joint Summer Research Conference on Matroid Theory held at the University of Washington, Seattle. The book features three comprehensive surveys that bring the reader to the forefront of research in matroid theory. Joseph Kung's encyclopedic treatment of the critical problem traces the development of this problem from its origins through its numerous links with other branches of mathematics to the current status of its many aspects. James Oxley's survey of the role of connectivity and structure theorems in matroid theory stresses the influence of the Wheels and Whirls Theorem of Tutte and the Splitter Theorem of Seymour. Walter Whiteley's article unifies applications of matroid theory to constrained geometrical systems, including the rigidity of bar-and-joint frameworks, parallel drawings, and splines. These widely accessible articles contain many new results and directions for further research and applications. The surveys are complemented by selected short research papers. The volume concludes with a chapter of open problems. Features self-contained, accessible surveys of three active research areas in matroid theory; many new results; pointers to new research topics; a chapter of open problems; mathematical applications; and applications and connections to other disciplines, such as computer-aided design and electrical and structural engineering.
## Polytopes - Combinations and Computation

Questions that arose from linear programming and combinatorial optimization have been a driving force for modern polytope theory, such as the diameter questions motivated by the desire to understand the complexity of the simplex algorithm, or the need to study facets for use in cutting plane procedures. In addition, algorithms now provide the means to computationally study polytopes, to compute their parameters such as flag vectors, graphs and volumes, and to construct examples of large complexity. The papers of this volume thus display a wide panorama of connections of polytope theory with other fields. Areas such as discrete and computational geometry, linear and combinatorial optimization, and scientific computing have contributed a combination of questions, ideas, results, algorithms and, finally, computer programs.
## Introduction to Algebraic Geometry

Algebraic geometry, central to pure mathematics, has important applications in such fields as engineering, computer science, statistics and computational biology, which exploit the computational algorithms that the theory provides. Users get the full benefit, however, when they know something of the underlying theory, as well as basic procedures and facts. This book is a systematic introduction to the central concepts of algebraic geometry most useful for computation. Written for advanced undergraduate and graduate students in mathematics and researchers in application areas, it focuses on specific examples and restricts development of formalism to what is needed to address these examples. In particular, it introduces the notion of Gröbner bases early on and develops algorithms for almost everything covered. It is based on courses given over the past five years in a large interdisciplinary programme in computational algebraic geometry at Rice University, spanning mathematics, computer science, biomathematics and bioinformatics.
## Combinatorial Commutative Algebra

Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs
## Lectures in Geometric Combinatorics

This book presents a course in the geometry of convex polytopes in arbitrary dimension, suitable for an advanced undergraduate or beginning graduate student. The book starts with the basics of polytope theory. Schlegel and Gale diagrams are introduced as geometric tools to visualize polytopes in high dimension and to unearth bizarre phenomena in polytopes. The heart of the book is a treatment of the secondary polytope of a point configuration and its connections to the state polytope of the toric ideal defined by the configuration. These polytopes are relatively recent constructs with numerous connections to discrete geometry, classical algebraic geometry, symplectic geometry, and combinatorics.The connections rely on Grobner bases of toric ideals and other methods from commutative algebra. The book is self-contained and does not require any background beyond basic linear algebra. With numerous figures and exercises, it can be used as a textbook for courses on geometric, combinatorial, and computational aspects of the theory of polytopes.
## Advances in Dynamic Games and Their Applications

This book presents current advances in the theory of dynamic games and their applications in several disciplines. The selected contributions cover a variety of topics ranging from purely theoretical developments in game theory, to numerical analysis of various dynamic games, and then progressing to applications of dynamic games in economics, finance, and energy supply. A unified collection of state-of-the-art advances in theoretical and numerical analysis of dynamic games and their applications, the work is suitable for researchers, practitioners, and graduate students in applied mathematics, engineering, economics, as well as environmental and management sciences.
## A Course in Convexity

Convexity is a simple idea that manifests itself in a surprising variety of places. This fertile field has an immensely rich structure and numerous applications. Barvinok demonstrates that simplicity, intuitive appeal, and the universality of applications make teaching (and learning) convexity a gratifying experience. The book will benefit both teacher and student: It is easy to understand, entertaining to the reader, and includes many exercises that vary in degree of difficulty. Overall, the author demonstrates the power of a few simple unifying principles in a variety of pure and applied problems. The prerequisites are minimal amounts of linear algebra, analysis, and elementary topology, plus basic computational skills. Portions of the book could be used by advanced undergraduates. As a whole, it is designed for graduate students interested in mathematical methods, computer science, electrical engineering, and operations research. The book will also be of interest to research mathematicians, who will find some results that are recent, some that are new, and many known results that are discussed from a new perspective.
## Toric Varieties

Toric varieties form a beautiful and accessible part of modern algebraic geometry. This book covers the standard topics in toric geometry; a novel feature is that each of the first nine chapters contains an introductory section on the necessary background material in algebraic geometry. Other topics covered include quotient constructions, vanishing theorems, equivariant cohomology, GIT quotients, the secondary fan, and the minimal model program for toric varieties. The subject lends itself to rich examples reflected in the 134 illustrations included in the text. The book also explores connections with commutative algebra and polyhedral geometry, treating both polytopes and their unbounded cousins, polyhedra. There are appendices on the history of toric varieties and the computational tools available to investigate nontrivial examples in toric geometry. Readers of this book should be familiar with the material covered in basic graduate courses in algebra and topology, and to a somewhat lesser degree, complex analysis. In addition, the authors assume that the reader has had some previous experience with algebraic geometry at an advanced undergraduate level. The book will be a useful reference for graduate students and researchers who are interested in algebraic geometry, polyhedral geometry, and toric varieties.
## The Mathematical Legacy of Richard P. Stanley

Richard Stanley's work in combinatorics revolutionized and reshaped the subject. His lectures, papers, and books inspired a generation of researchers. In this volume, these researchers explain how Stanley's vision and insights influenced and guided their own perspectives on the subject. As a valuable bonus, this book contains a collection of Stanley's short comments on each of his papers. This book may serve as an introduction to several different threads of ongoing research in combinatorics as well as giving historical perspective.
## Classical Topics in Discrete Geometry

Geometry is a classical core part of mathematics which, with its birth, marked the beginning of the mathematical sciences. Thus, not surprisingly, geometry has played a key role in many important developments of mathematics in the past, as well as in present times. While focusing on modern mathematics, one has to emphasize the increasing role of discrete mathematics, or equivalently, the broad movement to establish discrete analogues of major components of mathematics. In this way, the works of a number of outstanding mathema- cians including H. S. M. Coxeter (Canada), C. A. Rogers (United Kingdom), and L. Fejes-T oth (Hungary) led to the new and fast developing eld called discrete geometry. One can brie y describe this branch of geometry as the study of discrete arrangements of geometric objects in Euclidean, as well as in non-Euclidean spaces. This, as a classical core part, also includes the theory of polytopes and tilings in addition to the theory of packing and covering. D- crete geometry is driven by problems often featuring a very clear visual and applied character. The solutions use a variety of methods of modern mat- matics, including convex and combinatorial geometry, coding theory, calculus of variations, di erential geometry, group theory, and topology, as well as geometric analysis and number theory.
## Using the Borsuk-Ulam Theorem

To the uninitiated, algebraic topology might seem fiendishly complex, but its utility is beyond doubt. This brilliant exposition goes back to basics to explain how the subject has been used to further our understanding in some key areas. A number of important results in combinatorics, discrete geometry, and theoretical computer science have been proved using algebraic topology. While the results are quite famous, their proofs are not so widely understood. This book is the first textbook treatment of a significant part of these results. It focuses on so-called equivariant methods, based on the Borsuk-Ulam theorem and its generalizations. The topological tools are intentionally kept on a very elementary level. No prior knowledge of algebraic topology is assumed, only a background in undergraduate mathematics, and the required topological notions and results are gradually explained.
## Realization Spaces of Polytopes

The book collects results about realization spaces of polytopes. It gives a presentation of the author's "Universality Theorem for 4-polytopes". It is a comprehensive survey of the important results that have been obtained in that direction. The approaches chosen are direct and very geometric in nature. The book is addressed to researchers and to graduate students. The former will find a comprehensive source for the above mentioned results. The latter will find a readable introduction to the field. The reader is assumed to be familiar with basic concepts of linear algebra.
## Approximation Algorithms and Semidefinite Programming

Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency - both in theory and practice. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material. There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms. This book follows the “semidefinite side” of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.
## Higher Operads, Higher Categories

Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from areas as diverse as topology, quantum algebra, mathematical physics, logic, and theoretical computer science. The heart of this book is the language of generalized operads. This is as natural and transparent a language for higher category theory as the language of sheaves is for algebraic geometry, or vector spaces for linear algebra. It is introduced carefully, then used to give simple descriptions of a variety of higher categorical structures. In particular, one possible definition of n-category is discussed in detail, and some common aspects of other possible definitions are established. This is the first book on the subject and lays its foundations. It will appeal to both graduate students and established researchers who wish to become acquainted with this modern branch of mathematics.
## Linear Programming

For upper-division/graduate courses in operations research/management science, mathematics, and computer science, this text covers basic theory, selected applications, network flow problems, and advanced techniques.

Full PDF eBook Download Free

Author: Günter M. Ziegler

Publisher: Springer Science & Business Media

ISBN: 9780387943657

Category: Mathematics

Page: 370

View: 9400

Author: Arne Brondsted

Publisher: Springer Science & Business Media

ISBN: 1461211484

Category: Mathematics

Page: 162

View: 9174

Author: Bernd Sturmfels

Publisher: American Mathematical Soc.

ISBN: 0821804871

Category: Mathematics

Page: 162

View: 9092

Author: Ji?í Matoušek

Publisher: Springer Science & Business Media

ISBN: 1461300398

Category: Mathematics

Page: 486

View: 1623

Author: Anders Bjorner,Francesco Brenti

Publisher: Springer Science & Business Media

ISBN: 3540275967

Category: Mathematics

Page: 366

View: 4421

*AMS-IMS-SIAM Joint Summer Research Conference on Matroid Theory, July 2-6, 1995, University of Washington, Seattle*

Author: Joseph Edmond Bonin

Publisher: American Mathematical Soc.

ISBN: 0821805088

Category: Mathematics

Page: 418

View: 9531

Author: Gil Kalai,Günter M. Ziegler

Publisher: Birkhäuser

ISBN: 3034884389

Category: Mathematics

Page: 225

View: 8677

Author: Brendan Hassett

Publisher: Cambridge University Press

ISBN: 1139464590

Category: Mathematics

Page: N.A

View: 4147

Author: Ezra Miller,Bernd Sturmfels

Publisher: Springer Science & Business Media

ISBN: 0387271031

Category: Mathematics

Page: 420

View: 9480

Author: Rekha R. Thomas

Publisher: American Mathematical Soc.

ISBN: 9780821841402

Category: Mathematics

Page: 143

View: 2408

*Analytical and Numerical Developments*

Author: Pierre Bernhard,Vladimir Gaitsgory,Odile Pourtallier

Publisher: Springer Science & Business Media

ISBN: 0817648348

Category: Mathematics

Page: 462

View: 4187

Author: Alexander Barvinok

Publisher: American Mathematical Soc.

ISBN: 0821829688

Category: Mathematics

Page: 366

View: 6419

Author: David A. Cox,John B. Little,Henry K. Schenck

Publisher: American Mathematical Soc.

ISBN: 0821848194

Category: Mathematics

Page: 841

View: 7724

Author: Patricia Hersh,Thomas Lam,Pavlo Pylyavskyy,Victor Reiner

Publisher: American Mathematical Soc.

ISBN: 1470427249

Category: Combinatorial analysis

Page: 352

View: 3206

Author: Károly Bezdek

Publisher: Springer Science & Business Media

ISBN: 9781441906007

Category: Mathematics

Page: 166

View: 2948

*Lectures on Topological Methods in Combinatorics and Geometry*

Author: Jiri Matousek

Publisher: Springer Science & Business Media

ISBN: 3540766499

Category: Mathematics

Page: 214

View: 2739

Author: Jürgen Richter-Gebert

Publisher: Springer

ISBN: 3540496408

Category: Mathematics

Page: 188

View: 5251

Author: Bernd Gärtner,Jiri Matousek

Publisher: Springer Science & Business Media

ISBN: 3642220150

Category: Mathematics

Page: 251

View: 1677

Author: Tom Leinster

Publisher: Cambridge University Press

ISBN: 9780521532150

Category: Mathematics

Page: 433

View: 1287

Author: Vasek Chvatal,University Vasek Chvatal

Publisher: Bedford Books

ISBN: 9781429280518

Category: Mathematics

Page: 494

View: 5767