K-Theory, Arithmetic and Geometry

Seminar, Moscow University, 1984-1986

Author: Yurij I. Manin

Publisher: Springer

ISBN: 3540480161

Category: Mathematics

Page: 404

View: 1481

This volume of research papers is an outgrowth of the Manin Seminar at Moscow University, devoted to K-theory, homological algebra and algebraic geometry. The main topics discussed include additive K-theory, cyclic cohomology, mixed Hodge structures, theory of Virasoro and Neveu-Schwarz algebras.
Posted in Mathematics

A Century of Mathematics in America

Author: Peter L. Duren,Richard Askey,Uta C. Merzbach

Publisher: American Mathematical Soc.

ISBN: 9780821801307

Category: Mathematics

Page: 585

View: 7488

The first section of the book deals with some of the influential mathematics departments in the United States. Functioning as centers of research and training, these departments played a major role in shaping the mathematical life in this country. The second section deals with an extraordinary conference held at Princeton in 1946 to commemorate the university's bicentennial. The influence of women in American mathematics, the burgeoning of differential geometry in the last 50 years, and discussions of the work of von Karman and Weiner are among other topics covered. To download free chapters of this book, click here.
Posted in Mathematics

Motives

Author: Uwe Jannsen,Steven L. Kleiman,Jean-Pierre Serre

Publisher: American Mathematical Soc.

ISBN: 0821827979

Category: Mathematics

Page: 747

View: 2089

'Motives' were introduced in the mid-1960s by Grothendieck to explain the analogies among the various cohomology theories for algebraic varieties, to play the role of the missing rational cohomology, and to provide a blueprint for proving Weil's conjectures about the zeta function of a variety over a finite field. Over the last ten years or so, researchers in various areas - Hodge theory, algebraic $K$-theory, polylogarithms, automorphic forms, $L$-functions, $\ell$-adic representations, trigonometric sums, and algebraic cycles - have discovered that an enlarged (and in part conjectural) theory of 'mixed' motives indicates and explains phenomena appearing in each area.Thus the theory holds the potential of enriching and unifying these areas. This is one of two volumes containing the revised texts of nearly all the lectures presented at the AMS-IMS-SIAM Joint Summer Research Conference on Motives, held in Seattle, in 1991. A number of related works are also included, making for a total of forty-seven papers, from general introductions to specialized surveys to research papers.
Posted in Mathematics

PAMQ

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 5496

Posted in Mathematics

Invariance Theory

The Heat Equation and the Atiyah-Singer Index Theorem

Author: Peter B. Gilkey

Publisher: CRC Press

ISBN: 1351436422

Category: Mathematics

Page: 536

View: 4381

This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas, the Gauss-Bonnet theorem for a manifold with smooth boundary, and the geometrical theorem for a manifold with smooth boundary. The author uses invariance theory to identify the integrand of the index theorem for classical elliptic complexes with the invariants of the heat equation.
Posted in Mathematics

An Introduction to Intersection Homology Theory, Second Edition

Author: Frances Kirwan,Jonathan Woolf

Publisher: CRC Press

ISBN: 9781584881841

Category: Mathematics

Page: 248

View: 9517

Now more that a quarter of a century old, intersection homology theory has proven to be a powerful tool in the study of the topology of singular spaces, with deep links to many other areas of mathematics, including combinatorics, differential equations, group representations, and number theory. Like its predecessor, An Introduction to Intersection Homology Theory, Second Edition introduces the power and beauty of intersection homology, explaining the main ideas and omitting, or merely sketching, the difficult proofs. It treats both the basics of the subject and a wide range of applications, providing lucid overviews of highly technical areas that make the subject accessible and prepare readers for more advanced work in the area. This second edition contains entirely new chapters introducing the theory of Witt spaces, perverse sheaves, and the combinatorial intersection cohomology of fans. Intersection homology is a large and growing subject that touches on many aspects of topology, geometry, and algebra. With its clear explanations of the main ideas, this book builds the confidence needed to tackle more specialist, technical texts and provides a framework within which to place them.
Posted in Mathematics

Deutsche Bibliographie

Halbjahres-Verzeichnis

Author: N.A

Publisher: N.A

ISBN: N.A

Category: German imprints

Page: N.A

View: 4451

Posted in German imprints

国立国会図書館所蔵科学技術関係欧文会議錄目錄

Author: 国立国会図書館 (Japan),国立国会図書館 (Japan). 参考書誌部. 科学技術課

Publisher: N.A

ISBN: N.A

Category: Science

Page: N.A

View: 3074

Posted in Science

Reviews in Number Theory, 1984-96

As Printed in Mathematical Reviews

Author: N.A

Publisher: Amer Mathematical Society

ISBN: 9780821809372

Category: Mathematics

Page: 1012

View: 1682

These six volumes include approximately 20,000 reviews of items in number theory that appeared in Mathematical Reviews between 1984 and 1996. This is the third such set of volumes in number theory. The first was edited by W.J. LeVeque and included reviews from 1940-1972; the second was edited by R.K. Guy and appeared in 1984.
Posted in Mathematics

Differentialgeometrie, Topologie und Physik

Author: Mikio Nakahara

Publisher: Springer-Verlag

ISBN: 3662453002

Category: Science

Page: 597

View: 8843

Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.
Posted in Science

Analysis II

Author: Wolfgang Walter

Publisher: Springer-Verlag

ISBN: 3642967922

Category: Mathematics

Page: 398

View: 3150

Dem erfolgreichen Konzept von Analysis I folgend, wird auch im zweiten Teil dieses zweibändigen Analysis-Werkes viel Wert auf historische Zusammenhänge, Ausblicke und die Entwicklung der Analysis gelegt. Zu den Besonderheiten, die über den kanonischen Stoff des zweiten und dritten Semesters einer Analysisvorlesung hinausgehen, gehört das Lemma von Marston Morse. Die Grundtatsachen über die verschiedenen Integralbegriffe werden allesamt aus Sätzen über verallgemeinerte Limites (Moore-Smith-Konvergenz) abgeleitet. Die C?-Approximation von Funktionen (Friedrich Mollifiers) wird ebenso behandelt, wie die Theorie der absolut stetigen Funktionen. Bei den Fourierreihen wird die klassische Theorie in Weiterführung einer von Chernoff und Redheffer entwickelten Methode behandelt. Zahlreiche Beispiele, Übungsaufgaben und Anwendungen, z.B. aus der Physik und Astronomie runden dieses Lehrbuch ab.
Posted in Mathematics

Mathematical Reviews

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 3358

Posted in Mathematics

Geometrische Methoden in der Invariantentheorie

Author: Hanspeter Kraft

Publisher: Springer-Verlag

ISBN: 3663101436

Category: Technology & Engineering

Page: 308

View: 1167

In dieser Einführung geht es vor allem um die geometrischen Aspekte der Invariantentheorie. Die hauptsächliche Motivation bildet das Studium von Klassifikations- und Normalformenproblemen, die auch historisch der Ausgangspunkt für invariantentheoretische Untersuchungen waren.
Posted in Technology & Engineering

Storia della scienza

Author: Sandro Petruccioli

Publisher: N.A

ISBN: N.A

Category: Encyclopedias and dictionaries

Page: N.A

View: 6944

Posted in Encyclopedias and dictionaries

Diophant und diophantische Gleichungen

Author: BASMAKOVA

Publisher: Springer-Verlag

ISBN: 3034873573

Category: Juvenile Nonfiction

Page: 98

View: 6187

Die Wissenschaft arbeitet kumulativ. In der Mathematik und in den Naturwissenschaften gibt es keine unvollendeten Sympho nien. über Jahrhunderte hinweg können thematische Problem kreise ihre Dynamik behalten; im historischen Rückblick erschei nen dann lange, zusammenhängende Problemketten von einer faszinierenden Kontinuität des menschlichen Denkens. Es ist die Befriedigung grundlegender materieller und geistiger Bedürfnisse der Menschheit, die dem weitgespannten Bogen zwischen Ver gangenheit und Gegenwart Stabilität verleiht. Zugleich und andererseits liegt hierin der Umstand begründet, daß wissenschaftliche Fragestellungen der Vergangenheit in die Gegenwart und Zukunft hineinwirken können. Gerade die führen den 'Wissenschaftler waren sich der Fruchtbarkeit historischen Selbstverständnisses für ihre eigenen Forschungen bewußt. Die Abhandlungen von LAGRANGE zum Beispiel gehören zu den Kost barkeiten auch der mathematik-historischen Literatur. Und wie wären die Leistungen von EULER und GAUSS, von EINSTEIN und v. LAUE möglich gewesen ohne die von ihnen selbst vorgenommene Einordnung in eine wissenschaftliche Tradition? Auch die durch greifenden Revolutionen in der 'Vissenschaft bedeuten nichts an deres als die dialektische überwindung eines zuvor bestätigten wissenschaftlichen Tatbestandes. In diesem Sinne stellt die hier dargestellte Geschichte der Dio phantischen Analysis geradezu einen klassischen Fall aktueller Geschichte der Mathematik dar. Der historische Bogen spannt sich über mehr als 17 Jahrhunderte, vom Ausgang der Antike bis zum Beginn des 20. Jahrhunderts, ohne daß eine künstliche Reaktivierung der Leistungen von DIOPHANT notwendig geworden wäre. 1* 4 Geleitwort Die Autorin des vorgelegten Büchleins ist eine erfahrene und er folgreiche Historikerin der Mathematik. Frau Prof. Dr. I. G.
Posted in Juvenile Nonfiction