## Introduction to Probability, Statistics, and Random Processes

Statistics and Random Processes

Author: Hossein Pishro-Nik

Publisher: N.A

ISBN: 9780990637202

Category: Probabilities

Page: 746

View: 6757

The book covers basic concepts such as random experiments, probability axioms, conditional probability, and counting methods, single and multiple random variables (discrete, continuous, and mixed), as well as moment-generating functions, characteristic functions, random vectors, and inequalities; limit theorems and convergence; introduction to Bayesian and classical statistics; random processes including processing of random signals, Poisson processes, discrete-time and continuous-time Markov chains, and Brownian motion; simulation using MATLAB and R.
Posted in Probabilities

## Student's Solutions Guide for Introduction to Probability, Statistics, and Random Processes

Author: Hossein Pishro-Nik

Publisher: N.A

ISBN: 9780990637219

Category:

Page: 220

View: 4459

Since the 2014 publication of Introduction to Probability, Statistics, and Random Processes, many have requested the distribution of solutions to the problems in the textbook. This book contains guided solutions to the odd-numbered end-of-chapter problems found in the companion textbook. Student's Solutions Guide for Introduction to Probability, Statistics, and Random Processes has been published to help students better understand the subject and learn the necessary techniques to solve the problems. Additional materials such as videos, lectures, and calculators are available at www.probabilitycourse.com.
Posted in

## Introduction to Probability and Random Processes

Author: Jorge Auñón,V. Chandrasekar

Publisher: McGraw-Hill College

ISBN: 9780070015630

Category: Mathematics

Page: 532

View: 8201

Introduce your junior-level electrical engineering students to probability theory through the use of real data. Rather than offering purely hypothetical cases, Introduction to Probability and Random Processes employs real data and examples to illustrate concepts. Traditional pencil-and-paper exercises, as well as the opportunity to use MATLAB and MathCad, provide diverse problem-solving opportunities.
Posted in Mathematics

## Probability Theory, Random Processes and Mathematical Statistics

Author: Y. Rozanov

Publisher: Springer Science & Business Media

ISBN: 9401104492

Category: Mathematics

Page: 259

View: 3721

Probability Theory, Theory of Random Processes and Mathematical Statistics are important areas of modern mathematics and its applications. They develop rigorous models for a proper treatment for various 'random' phenomena which we encounter in the real world. They provide us with numerous tools for an analysis, prediction and, ultimately, control of random phenomena. Statistics itself helps with choice of a proper mathematical model (e.g., by estimation of unknown parameters) on the basis of statistical data collected by observations. This volume is intended to be a concise textbook for a graduate level course, with carefully selected topics representing the most important areas of modern Probability, Random Processes and Statistics. The first part (Ch. 1-3) can serve as a self-contained, elementary introduction to Probability, Random Processes and Statistics. It contains a number of relatively sim ple and typical examples of random phenomena which allow a natural introduction of general structures and methods. Only knowledge of elements of real/complex analysis, linear algebra and ordinary differential equations is required here. The second part (Ch. 4-6) provides a foundation of Stochastic Analysis, gives information on basic models of random processes and tools to study them. Here a familiarity with elements of functional analysis is necessary. Our intention to make this course fast-moving made it necessary to present important material in a form of examples.
Posted in Mathematics

## Introduction to Probability and Stochastic Processes with Applications

Author: Liliana Blanco Castañeda,Viswanathan Arunachalam,Selvamuthu Dharmaraja

Publisher: John Wiley & Sons

ISBN: 1118344960

Category: Mathematics

Page: 614

View: 1507

An easily accessible, real-world approach to probability andstochastic processes Introduction to Probability and Stochastic Processes withApplications presents a clear, easy-to-understand treatment ofprobability and stochastic processes, providing readers with asolid foundation they can build upon throughout their careers. Withan emphasis on applications in engineering, applied sciences,business and finance, statistics, mathematics, and operationsresearch, the book features numerous real-world examples thatillustrate how random phenomena occur in nature and how to useprobabilistic techniques to accurately model these phenomena. The authors discuss a broad range of topics, from the basicconcepts of probability to advanced topics for further study,including Itô integrals, martingales, and sigma algebras.Additional topical coverage includes: Distributions of discrete and continuous random variablesfrequently used in applications Random vectors, conditional probability, expectation, andmultivariate normal distributions The laws of large numbers, limit theorems, and convergence ofsequences of random variables Stochastic processes and related applications, particularly inqueueing systems Financial mathematics, including pricing methods such asrisk-neutral valuation and the Black-Scholes formula Extensive appendices containing a review of the requisitemathematics and tables of standard distributions for use inapplications are provided, and plentiful exercises, problems, andsolutions are found throughout. Also, a related website featuresadditional exercises with solutions and supplementary material forclassroom use. Introduction to Probability and StochasticProcesses with Applications is an ideal book for probabilitycourses at the upper-undergraduate level. The book is also avaluable reference for researchers and practitioners in the fieldsof engineering, operations research, and computer science whoconduct data analysis to make decisions in their everyday work.
Posted in Mathematics

## Introduction to Probability with R

Author: Kenneth Baclawski

Publisher: CRC Press

ISBN: 9781420065220

Category: Mathematics

Page: 384

View: 6446

Based on a popular course taught by the late Gian-Carlo Rota of MIT, with many new topics covered as well, Introduction to Probability with R presents R programs and animations to provide an intuitive yet rigorous understanding of how to model natural phenomena from a probabilistic point of view. Although the R programs are small in length, they are just as sophisticated and powerful as longer programs in other languages. This brevity makes it easy for students to become proficient in R. This calculus-based introduction organizes the material around key themes. One of the most important themes centers on viewing probability as a way to look at the world, helping students think and reason probabilistically. The text also shows how to combine and link stochastic processes to form more complex processes that are better models of natural phenomena. In addition, it presents a unified treatment of transforms, such as Laplace, Fourier, and z; the foundations of fundamental stochastic processes using entropy and information; and an introduction to Markov chains from various viewpoints. Each chapter includes a short biographical note about a contributor to probability theory, exercises, and selected answers. The book has an accompanying website with more information.
Posted in Mathematics

## Introduction to Probability and Statistics for Engineers and Scientists

Author: Sheldon M. Ross

ISBN: 0123948428

Category: Mathematics

Page: 686

View: 445

Introduction to Probability and Statistics for Engineers and Scientists provides a superior introduction to applied probability and statistics for engineering or science majors. Ross emphasizes the manner in which probability yields insight into statistical problems; ultimately resulting in an intuitive understanding of the statistical procedures most often used by practicing engineers and scientists. Real data sets are incorporated in a wide variety of exercises and examples throughout the book, and this emphasis on data motivates the probability coverage. As with the previous editions, Ross' text has tremendously clear exposition, plus real-data examples and exercises throughout the text. Numerous exercises, examples, and applications connect probability theory to everyday statistical problems and situations. Clear exposition by a renowned expert author Real data examples that use significant real data from actual studies across life science, engineering, computing and business End of Chapter review material that emphasizes key ideas as well as the risks associated with practical application of the material 25% New Updated problem sets and applications, that demonstrate updated applications to engineering as well as biological, physical and computer science New additions to proofs in the estimation section New coverage of Pareto and lognormal distributions, prediction intervals, use of dummy variables in multiple regression models, and testing equality of multiple population distributions.
Posted in Mathematics

## Introduction to Random Processes

Author: Yurii A. Rozanov

Publisher: Springer Science & Business Media

ISBN: 3642727174

Category: Mathematics

Page: 117

View: 7038

Today, the theory of random processes represents a large field of mathematics with many different branches, and the task of choosing topics for a brief introduction to this theory is far from being simple. This introduction to the theory of random processes uses mathematical models that are simple, but have some importance for applications. We consider different processes, whose development in time depends on some random factors. The fundamental problem can be briefly circumscribed in the following way: given some relatively simple characteristics of a process, compute the probability of another event which may be very complicated; or estimate a random variable which is related to the behaviour of the process. The models that we consider are chosen in such a way that it is possible to discuss the different methods of the theory of random processes by referring to these models. The book starts with a treatment of homogeneous Markov processes with a countable number of states. The main topic is the ergodic theorem, the method of Kolmogorov's differential equations (Secs. 1-4) and the Brownian motion process, the connecting link being the transition from Kolmogorov's differential-difference equations for random walk to a limit diffusion equation (Sec. 5).
Posted in Mathematics

## An Introduction to Probability and Stochastic Processes

Author: James L. Melsa,Andrew P. Sage

Publisher: Courier Corporation

ISBN: 0486490998

Category: Mathematics

Page: 403

View: 514

Detailed coverage of probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.
Posted in Mathematics

## Introduction to Probability with Statistical Applications

Author: Géza Schay

Publisher: Birkhäuser

ISBN: 3319306200

Category: Mathematics

Page: 385

View: 2976

Now in its second edition, this textbook serves as an introduction to probability and statistics for non-mathematics majors who do not need the exhaustive detail and mathematical depth provided in more comprehensive treatments of the subject. The presentation covers the mathematical laws of random phenomena, including discrete and continuous random variables, expectation and variance, and common probability distributions such as the binomial, Poisson, and normal distributions. More classical examples such as Montmort's problem, the ballot problem, and Bertrand’s paradox are now included, along with applications such as the Maxwell-Boltzmann and Bose-Einstein distributions in physics. Key features in new edition: * 35 new exercises * Expanded section on the algebra of sets * Expanded chapters on probabilities to include more classical examples * New section on regression * Online instructors' manual containing solutions to all exercises“/p> Advanced undergraduate and graduate students in computer science, engineering, and other natural and social sciences with only a basic background in calculus will benefit from this introductory text balancing theory with applications. Review of the first edition: This textbook is a classical and well-written introduction to probability theory and statistics. ... the book is written ‘for an audience such as computer science students, whose mathematical background is not very strong and who do not need the detail and mathematical depth of similar books written for mathematics or statistics majors.’ ... Each new concept is clearly explained and is followed by many detailed examples. ... numerous examples of calculations are given and proofs are well-detailed." (Sophie Lemaire, Mathematical Reviews, Issue 2008 m)
Posted in Mathematics

## An Introduction to Stochastic Processes

With Special Reference to Methods and Applications

Author: M. S. Bartlett

Publisher: CUP Archive

ISBN: 9780521215855

Category: Mathematics

Page: 388

View: 1455

Random sequences; Processes in continuous time; Miscellaneous statistical applications; Limiting stochastic operations; Stationary processes; Prediction and communication theory; The statistical analysis of stochastic processes; Correlation analysis of time-series.
Posted in Mathematics

## Introduction to Stochastic Processes

Author: Erhan Cinlar

Publisher: Courier Corporation

ISBN: 0486497976

Category: Mathematics

Page: 402

View: 6764

This clear presentation of themost fundamental models ofrandom phenomena employsmethods that recognize computerrelatedaspects of theory. Topicsinclude probability spaces andrandom variables, expectationsand independence, Bernoulliprocesses and sums of independentrandom variables, Poisson processes, Markov chainsand processes, and renewal theory. Assuming only a backgroundin calculus, this outstanding text includes an introductionto basic stochastic processes.Reprint of the Prentice-Hall Publishers, Englewood Cliffs,New Jersey, 1975 edition.
Posted in Mathematics

## Fundamentals of Applied Probability and Random Processes

Author: Oliver Ibe

ISBN: 0128010355

Category: Mathematics

Page: 456

View: 4532

The long-awaited revision of Fundamentals of Applied Probability and Random Processes expands on the central components that made the first edition a classic. The title is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of engineering problems. Engineers and students studying probability and random processes also need to analyze data, and thus need some knowledge of statistics. This book is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability to real-world problems, and introduce the basics of statistics. The book's clear writing style and homework problems make it ideal for the classroom or for self-study. Demonstrates concepts with more than 100 illustrations, including 2 dozen new drawings Expands readers’ understanding of disruptive statistics in a new chapter (chapter 8) Provides new chapter on Introduction to Random Processes with 14 new illustrations and tables explaining key concepts. Includes two chapters devoted to the two branches of statistics, namely descriptive statistics (chapter 8) and inferential (or inductive) statistics (chapter 9).
Posted in Mathematics

## Introduction to Probability Models

Author: Sheldon M. Ross

ISBN: 0124081215

Category: Mathematics

Page: 784

View: 376

Introduction to Probability Models, Eleventh Edition is the latest version of Sheldon Ross's classic bestseller, used extensively by professionals and as the primary text for a first undergraduate course in applied probability. The book introduces the reader to elementary probability theory and stochastic processes, and shows how probability theory can be applied fields such as engineering, computer science, management science, the physical and social sciences, and operations research. The hallmark features of this text have been retained in this eleventh edition: superior writing style; excellent exercises and examples covering the wide breadth of coverage of probability topic; and real-world applications in engineering, science, business and economics. The 65% new chapter material includes coverage of finite capacity queues, insurance risk models, and Markov chains, as well as updated data. The book contains compulsory material for new Exam 3 of the Society of Actuaries including several sections in the new exams. It also presents new applications of probability models in biology and new material on Point Processes, including the Hawkes process. There is a list of commonly used notations and equations, along with an instructor's solutions manual. This text will be a helpful resource for professionals and students in actuarial science, engineering, operations research, and other fields in applied probability. Updated data, and a list of commonly used notations and equations, instructor's solutions manual Offers new applications of probability models in biology and new material on Point Processes, including the Hawkes process Introduces elementary probability theory and stochastic processes, and shows how probability theory can be applied in fields such as engineering, computer science, management science, the physical and social sciences, and operations research Covers finite capacity queues, insurance risk models, and Markov chains Contains compulsory material for new Exam 3 of the Society of Actuaries including several sections in the new exams Appropriate for a full year course, this book is written under the assumption that students are familiar with calculus
Posted in Mathematics

## Probability and Random Processes

Author: Geoffrey Grimmett,David Stirzaker

Publisher: Oxford University Press

ISBN: 9780198572220

Category: Mathematics

Page: 596

View: 8097

This textbook provides a wide-ranging and entertaining indroduction to probability and random processes and many of their practical applications. It includes many exercises and problems with solutions.
Posted in Mathematics

## An Introduction to Probability and Stochastic Processes

Author: Marc A. Berger

Publisher: Springer Science & Business Media

ISBN: 1461227267

Category: Mathematics

Page: 205

View: 6712

These notes were written as a result of my having taught a "nonmeasure theoretic" course in probability and stochastic processes a few times at the Weizmann Institute in Israel. I have tried to follow two principles. The first is to prove things "probabilistically" whenever possible without recourse to other branches of mathematics and in a notation that is as "probabilistic" as possible. Thus, for example, the asymptotics of pn for large n, where P is a stochastic matrix, is developed in Section V by using passage probabilities and hitting times rather than, say, pulling in Perron Frobenius theory or spectral analysis. Similarly in Section II the joint normal distribution is studied through conditional expectation rather than quadratic forms. The second principle I have tried to follow is to only prove results in their simple forms and to try to eliminate any minor technical com putations from proofs, so as to expose the most important steps. Steps in proofs or derivations that involve algebra or basic calculus are not shown; only steps involving, say, the use of independence or a dominated convergence argument or an assumptjon in a theorem are displayed. For example, in proving inversion formulas for characteristic functions I omit steps involving evaluation of basic trigonometric integrals and display details only where use is made of Fubini's Theorem or the Dominated Convergence Theorem.
Posted in Mathematics

## Introduction to Probability Models, ISE

Author: Sheldon M. Ross

ISBN: 0080920179

Category: Mathematics

Page: 800

View: 4325

Ross's classic bestseller, Introduction to Probability Models, has been used extensively by professionals and as the primary text for a first undergraduate course in applied probability. It provides an introduction to elementary probability theory and stochastic processes, and shows how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. With the addition of several new sections relating to actuaries, this text is highly recommended by the Society of Actuaries. A new section (3.7) on COMPOUND RANDOM VARIABLES, that can be used to establish a recursive formula for computing probability mass functions for a variety of common compounding distributions. A new section (4.11) on HIDDDEN MARKOV CHAINS, including the forward and backward approaches for computing the joint probability mass function of the signals, as well as the Viterbi algorithm for determining the most likely sequence of states. Simplified Approach for Analyzing Nonhomogeneous Poisson processes Additional results on queues relating to the (a) conditional distribution of the number found by an M/M/1 arrival who spends a time t in the system; (b) inspection paradox for M/M/1 queues (c) M/G/1 queue with server breakdown Many new examples and exercises.
Posted in Mathematics

## Introduction to stochastic processes in biostatistics

Author: Chin Long Chiang

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: 313

View: 6231

Posted in Mathematics

## An Introduction to Stochastic Processes in Physics

Author: Don S. Lemons,Paul Langevin

Publisher: JHU Press

ISBN: 9780801868672

Category: Mathematics

Page: 110

View: 5711

"Students will love this book. It tells them without fuss how to do simple and useful numerical calculations, with just enough background to understand what they are doing... a refreshingly brief and unconvoluted work." -- American Journal of Physics
Posted in Mathematics

## Introduction to Stochastic Processes, Second Edition

Author: Gregory F. Lawler

Publisher: CRC Press

ISBN: 9781584886518

Category: Mathematics

Page: 248

View: 4679

Emphasizing fundamental mathematical ideas rather than proofs, Introduction to Stochastic Processes, Second Edition provides quick access to important foundations of probability theory applicable to problems in many fields. Assuming that you have a reasonable level of computer literacy, the ability to write simple programs, and the access to software for linear algebra computations, the author approaches the problems and theorems with a focus on stochastic processes evolving with time, rather than a particular emphasis on measure theory. For those lacking in exposure to linear differential and difference equations, the author begins with a brief introduction to these concepts. He proceeds to discuss Markov chains, optimal stopping, martingales, and Brownian motion. The book concludes with a chapter on stochastic integration. The author supplies many basic, general examples and provides exercises at the end of each chapter. New to the Second Edition: Expanded chapter on stochastic integration that introduces modern mathematical finance Introduction of Girsanov transformation and the Feynman-Kac formula Expanded discussion of Itô's formula and the Black-Scholes formula for pricing options New topics such as Doob's maximal inequality and a discussion on self similarity in the chapter on Brownian motion Applicable to the fields of mathematics, statistics, and engineering as well as computer science, economics, business, biological science, psychology, and engineering, this concise introduction is an excellent resource both for students and professionals.
Posted in Mathematics