Author: Georg Hager,Gerhard Wellein

Publisher: CRC Press

ISBN: 9781439811931

Category: Computers

Page: 356

View: 1739

Skip to content
#
Search Results for: introduction-to-high-performance-computing-for-scientists-and-engineers-chapman-hall-crc-computational-science

## Introduction to High Performance Computing for Scientists and Engineers

Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the authors gained a unique perspective on the requirements and attitudes of users as well as manufacturers of parallel computers. The text first introduces the architecture of modern cache-based microprocessors and discusses their inherent performance limitations, before describing general optimization strategies for serial code on cache-based architectures. It next covers shared- and distributed-memory parallel computer architectures and the most relevant network topologies. After discussing parallel computing on a theoretical level, the authors show how to avoid or ameliorate typical performance problems connected with OpenMP. They then present cache-coherent nonuniform memory access (ccNUMA) optimization techniques, examine distributed-memory parallel programming with message passing interface (MPI), and explain how to write efficient MPI code. The final chapter focuses on hybrid programming with MPI and OpenMP. Users of high performance computers often have no idea what factors limit time to solution and whether it makes sense to think about optimization at all. This book facilitates an intuitive understanding of performance limitations without relying on heavy computer science knowledge. It also prepares readers for studying more advanced literature. Read about the authors’ recent honor: Informatics Europe Curriculum Best Practices Award for Parallelism and Concurrency
## Introduction to High Performance Computing for Scientists and Engineers

Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the authors gained a unique perspective on the requirements and attitudes of users as well as manufacturers of parallel computers. The text first introduces the architecture of modern cache-based microprocessors and discusses their inherent performance limitations, before describing general optimization strategies for serial code on cache-based architectures. It next covers shared- and distributed-memory parallel computer architectures and the most relevant network topologies. After discussing parallel computing on a theoretical level, the authors show how to avoid or ameliorate typical performance problems connected with OpenMP. They then present cache-coherent non-uniform memory access (ccNUMA) optimization techniques, examine distributed-memory parallel programming with message passing interface (MPI), and explain how to write efficient MPI code. The final chapter focuses on hybrid programming with MPI and OpenMP. Users of high performance computers often have no idea what factors limit time to solution and whether it makes sense to think about optimization at all. This book facilitates an intuitive understanding of performance limitations without relying on heavy computer science knowledge. It also prepares readers for studying more advanced literature. Read about the authors' recent honor: Informatics Europe Curriculum Best Practices Award for Parallelism and Concurrency.
## High Performance Computing

High Performance Computing: Programming and Applications presents techniques that address new performance issues in the programming of high performance computing (HPC) applications. Omitting tedious details, the book discusses hardware architecture concepts and programming techniques that are the most pertinent to application developers for achieving high performance. Even though the text concentrates on C and Fortran, the techniques described can be applied to other languages, such as C++ and Java. Drawing on their experience with chips from AMD and systems, interconnects, and software from Cray Inc., the authors explore the problems that create bottlenecks in attaining good performance. They cover techniques that pertain to each of the three levels of parallelism: Message passing between the nodes Shared memory parallelism on the nodes or the multiple instruction, multiple data (MIMD) units on the accelerator Vectorization on the inner level After discussing architectural and software challenges, the book outlines a strategy for porting and optimizing an existing application to a large massively parallel processor (MPP) system. With a look toward the future, it also introduces the use of general purpose graphics processing units (GPGPUs) for carrying out HPC computations. A companion website at www.hybridmulticoreoptimization.com contains all the examples from the book, along with updated timing results on the latest released processors.
## Contemporary High Performance Computing

Contemporary High Performance Computing: From Petascale toward Exascale focuses on the ecosystems surrounding the world’s leading centers for high performance computing (HPC). It covers many of the important factors involved in each ecosystem: computer architectures, software, applications, facilities, and sponsors. The first part of the book examines significant trends in HPC systems, including computer architectures, applications, performance, and software. It discusses the growth from terascale to petascale computing and the influence of the TOP500 and Green500 lists. The second part of the book provides a comprehensive overview of 18 HPC ecosystems from around the world. Each chapter in this section describes programmatic motivation for HPC and their important applications; a flagship HPC system overview covering computer architecture, system software, programming systems, storage, visualization, and analytics support; and an overview of their data center/facility. The last part of the book addresses the role of clouds and grids in HPC, including chapters on the Magellan, FutureGrid, and LLGrid projects. With contributions from top researchers directly involved in designing, deploying, and using these supercomputing systems, this book captures a global picture of the state of the art in HPC.
## Introduction to Reversible Computing

Few books comprehensively cover the software and programming aspects of reversible computing. Filling this gap, Introduction to Reversible Computing offers an expanded view of the field that includes the traditional energy-motivated hardware viewpoint as well as the emerging application-motivated software approach. Collecting scattered knowledge into one coherent account, the book provides a compendium of both classical and recently developed results on reversible computing. It explores up-and-coming theories, techniques, and tools for the application of reversible computing—the logical next step in the evolution of computing systems. The book covers theory, hardware and software aspects, fundamental limits, complexity analyses, practical algorithms, compilers, efficiency improvement techniques, and application areas. The topics span several areas of computer science, including high-performance computing, parallel/distributed systems, computational theory, compilers, power-aware computing, and supercomputing. The book presents sufficient material for newcomers to easily get started. It provides citations to original articles on seminal results so that readers can consult the corresponding publications in the literature. Pointers to additional resources are included for more advanced topics. For those already familiar with a certain topic within reversible computing, the book can serve as a one-stop reference to other topics in the field.
## High Performance Visualization

Visualization and analysis tools, techniques, and algorithms have undergone a rapid evolution in recent decades to accommodate explosive growth in data size and complexity and to exploit emerging multi- and many-core computational platforms. High Performance Visualization: Enabling Extreme-Scale Scientific Insight focuses on the subset of scientific visualization concerned with algorithm design, implementation, and optimization for use on today’s largest computational platforms. The book collects some of the most seminal work in the field, including algorithms and implementations running at the highest levels of concurrency and used by scientific researchers worldwide. After introducing the fundamental concepts of parallel visualization, the book explores approaches to accelerate visualization and analysis operations on high performance computing platforms. Looking to the future and anticipating changes to computational platforms in the transition from the petascale to exascale regime, it presents the main research challenges and describes several contemporary, high performance visualization implementations. Reflecting major concepts in high performance visualization, this book unifies a large and diverse body of computer science research, development, and practical applications. It describes the state of the art at the intersection of scientific visualization, large data, and high performance computing trends, giving readers the foundation to apply the concepts and carry out future research in this area.
## Scientific Computing with Multicore and Accelerators

The hybrid/heterogeneous nature of future microprocessors and large high-performance computing systems will result in a reliance on two major types of components: multicore/manycore central processing units and special purpose hardware/massively parallel accelerators. While these technologies have numerous benefits, they also pose substantial performance challenges for developers, including scalability, software tuning, and programming issues. Researchers at the Forefront Reveal Results from Their Own State-of-the-Art Work Edited by some of the top researchers in the field and with contributions from a variety of international experts, Scientific Computing with Multicore and Accelerators focuses on the architectural design and implementation of multicore and manycore processors and accelerators, including graphics processing units (GPUs) and the Sony Toshiba IBM (STI) Cell Broadband Engine (BE) currently used in the Sony PlayStation 3. The book explains how numerical libraries, such as LAPACK, help solve computational science problems; explores the emerging area of hardware-oriented numerics; and presents the design of a fast Fourier transform (FFT) and a parallel list ranking algorithm for the Cell BE. It covers stencil computations, auto-tuning, optimizations of a computational kernel, sequence alignment and homology, and pairwise computations. The book also evaluates the portability of drug design applications to the Cell BE and illustrates how to successfully exploit the computational capabilities of GPUs for scientific applications. It concludes with chapters on dataflow frameworks, the Charm++ programming model, scan algorithms, and a portable intracore communication framework. Explores the New Computational Landscape of Hybrid Processors By offering insight into the process of constructing and effectively using the technology, this volume provides a thorough and practical introduction to the area of hybrid computing. It discusses introductory concepts and simple examples of parallel computing, logical and performance debugging for parallel computing, and advanced topics and issues related to the use and building of many applications.
## Petascale Computing

Although the highly anticipated petascale computers of the near future will perform at an order of magnitude faster than today’s quickest supercomputer, the scaling up of algorithms and applications for this class of computers remains a tough challenge. From scalable algorithm design for massive concurrency toperformance analyses and scientific visualization, Petascale Computing: Algorithms and Applications captures the state of the art in high-performance computing algorithms and applications. Featuring contributions from the world’s leading experts in computational science, this edited collection explores the use of petascale computers for solving the most difficult scientific and engineering problems of the current century. Covering a wide range of important topics, the book illustrates how petascale computing can be applied to space and Earth science missions, biological systems, weather prediction, climate science, disasters, black holes, and gamma ray bursts. It details the simulation of multiphysics, cosmological evolution, molecular dynamics, and biomolecules. The book also discusses computational aspects that include the Uintah framework, Enzo code, multithreaded algorithms, petaflops, performance analysis tools, multilevel finite element solvers, finite element code development, Charm++, and the Cactus framework. Supplying petascale tools, programming methodologies, and an eight-page color insert, this volume addresses the challenging problems of developing application codes that can take advantage of the architectural features of the new petascale systems in advance of their first deployment.
## High Performance Parallel I/O

Gain Critical Insight into the Parallel I/O Ecosystem Parallel I/O is an integral component of modern high performance computing (HPC), especially in storing and processing very large datasets to facilitate scientific discovery. Revealing the state of the art in this field, High Performance Parallel I/O draws on insights from leading practitioners, researchers, software architects, developers, and scientists who shed light on the parallel I/O ecosystem. The first part of the book explains how large-scale HPC facilities scope, configure, and operate systems, with an emphasis on choices of I/O hardware, middleware, and applications. The book then traverses up the I/O software stack. The second part covers the file system layer and the third part discusses middleware (such as MPIIO and PLFS) and user-facing libraries (such as Parallel-NetCDF, HDF5, ADIOS, and GLEAN). Delving into real-world scientific applications that use the parallel I/O infrastructure, the fourth part presents case studies from particle-in-cell, stochastic, finite volume, and direct numerical simulations. The fifth part gives an overview of various profiling and benchmarking tools used by practitioners. The final part of the book addresses the implications of current trends in HPC on parallel I/O in the exascale world.
## Introduction to Concurrency in Programming Languages

Exploring how concurrent programming can be assisted by language-level techniques, Introduction to Concurrency in Programming Languages presents high-level language techniques for dealing with concurrency in a general context. It provides an understanding of programming languages that offer concurrency features as part of the language definition. The book supplies a conceptual framework for different aspects of parallel algorithm design and implementation. It first addresses the limitations of traditional programming techniques and models when dealing with concurrency. The book then explores the current state of the art in concurrent programming and describes high-level language constructs for concurrency. It also discusses the historical evolution of hardware, corresponding high-level techniques that were developed, and the connection to modern systems, such as multicore and manycore processors. The remainder of the text focuses on common high-level programming techniques and their application to a range of algorithms. The authors offer case studies on genetic algorithms, fractal generation, cellular automata, game logic for solving Sudoku puzzles, pipelined algorithms, and more. Illustrating the effect of concurrency on programs written in familiar languages, this text focuses on novel language abstractions that truly bring concurrency into the language and aid analysis and compilation tools in generating efficient, correct programs. It also explains the complexity involved in taking advantage of concurrency with regard to program correctness and performance.
## High Performance Computing

High Performance Computing: Modern Systems and Practices is a fully comprehensive and easily accessible treatment of high performance computing, covering fundamental concepts and essential knowledge while also providing key skills training. With this book, domain scientists will learn how to use supercomputers as a key tool in their quest for new knowledge. In addition, practicing engineers will discover how supercomputers can employ HPC systems and methods to the design and simulation of innovative products, and students will begin their careers with an understanding of possible directions for future research and development in HPC. Those who maintain and administer commodity clusters will find this textbook provides essential coverage of not only what HPC systems do, but how they are used. Covers enabling technologies, system architectures and operating systems, parallel programming languages and algorithms, scientific visualization, correctness and performance debugging tools and methods, GPU accelerators and big data problems Provides numerous examples that explore the basics of supercomputing, while also providing practical training in the real use of high-end computers Helps users with informative and practical examples that build knowledge and skills through incremental steps Features sidebars of background and context to present a live history and culture of this unique field Includes online resources, such as recorded lectures from the authors’ HPC courses
## High Performance Computing

The computing power that's available on the average desktop has exploded in the past few years. A typical PC has performance exceeding that of a multi-million dollar supercomputer a mere decade ago. To some people, that might mean that it's time to sit back and watch computers get faster: performance is no longer an issue, we'll let hardware do the work. But if you're looking at this book, you're not one of them. Performance is always an issue. Even with the fastest computers, there's a need to harness the processing power and get more work done in a limited amount of time. If you're a software developer, you probably know that getting the most out of a modern workstation or PC can be tricky. Paying closer attention to memory reference patterns and loop structure can have a huge payoff.High Performance Computingdiscusses how modern workstations get their performance and how you can write code that makes optimal use of your hardware. You'll learn what the newest buzzwords really mean, how caching and other memory design features affect the way your software behaves, and where the newest "post-RISC" architectures are headed. If you're involved with purchasing or evaluating workstations, this book will help you make intelligent comparisons. You'll learn how to interpret the commonly quoted industry benchmarks, what vendors do to show their machines in the best possible light, and how to run your own benchmarks. Whether you're using the latest Pentium PC or a highly specialized multiprocessor, you'll findHigh Performance Computingan indispensable guide. Topics covered include: CPU and memory architecture for RISC microprocessors and their successors Optimizing compilers Timing and profiling programs Understanding parallelism Loop and memory reference optimizations Benchmarking Parallel Computing and Multiprocessing
## High-Performance Computing in Finance

High-Performance Computing (HPC) delivers higher computational performance to solve problems in science, engineering and finance. There are various HPC resources available for different needs, ranging from cloud computing– that can be used without much expertise and expense – to more tailored hardware, such as Field-Programmable Gate Arrays (FPGAs) or D-Wave’s quantum computer systems. High-Performance Computing in Finance is the first book that provides a state-of-the-art introduction to HPC for finance, capturing both academically and practically relevant problems.
## Introduction to Elementary Computational Modeling

With an emphasis on problem solving, this book introduces the basic principles and fundamental concepts of computational modeling. It emphasizes reasoning and conceptualizing problems, the elementary mathematical modeling, and the implementation using computing concepts and principles. Examples are included that demonstrate the computation and visualization of the implemented models. The author provides case studies, along with an overview of computational models and their development. The first part of the text presents the basic concepts of models and techniques for designing and implementing problem solutions. It applies standard pseudo-code constructs and flowcharts for designing models. The second part covers model implementation with basic programming constructs using MATLAB®, Octave, and FreeMat. Aimed at beginning students in computer science, mathematics, statistics, and engineering, Introduction to Elementary Computational Modeling: Essential Concepts, Principles, and Problem Solving focuses on fundamentals, helping the next generation of scientists and engineers hone their problem solving skills.
## Problem-solving in High Performance Computing

Problem-Solving in High Performance Computing: A Situational Awareness Approach with Linux focuses on understanding giant computing grids as cohesive systems. Unlike other titles on general problem-solving or system administration, this book offers a cohesive approach to complex, layered environments, highlighting the difference between standalone system troubleshooting and complex problem-solving in large, mission critical environments, and addressing the pitfalls of information overload, micro, and macro symptoms, also including methods for managing problems in large computing ecosystems. The authors offer perspective gained from years of developing Intel-based systems that lead the industry in the number of hosts, software tools, and licenses used in chip design. The book offers unique, real-life examples that emphasize the magnitude and operational complexity of high performance computer systems. Provides insider perspectives on challenges in high performance environments with thousands of servers, millions of cores, distributed data centers, and petabytes of shared data Covers analysis, troubleshooting, and system optimization, from initial diagnostics to deep dives into kernel crash dumps Presents macro principles that appeal to a wide range of users and various real-life, complex problems Includes examples from 24/7 mission-critical environments with specific HPC operational constraints
## Exascale Scientific Applications

From the Foreword: "The authors of the chapters in this book are the pioneers who will explore the exascale frontier. The path forward will not be easy... These authors, along with their colleagues who will produce these powerful computer systems will, with dedication and determination, overcome the scalability problem, discover the new algorithms needed to achieve exascale performance for the broad range of applications that they represent, and create the new tools needed to support the development of scalable and portable science and engineering applications. Although the focus is on exascale computers, the benefits will permeate all of science and engineering because the technologies developed for the exascale computers of tomorrow will also power the petascale servers and terascale workstations of tomorrow. These affordable computing capabilities will empower scientists and engineers everywhere." — Thom H. Dunning, Jr., Pacific Northwest National Laboratory and University of Washington, Seattle, Washington, USA "This comprehensive summary of applications targeting Exascale at the three DoE labs is a must read." — Rio Yokota, Tokyo Institute of Technology, Tokyo, Japan "Numerical simulation is now a need in many fields of science, technology, and industry. The complexity of the simulated systems coupled with the massive use of data makes HPC essential to move towards predictive simulations. Advances in computer architecture have so far permitted scientific advances, but at the cost of continually adapting algorithms and applications. The next technological breakthroughs force us to rethink the applications by taking energy consumption into account. These profound modifications require not only anticipation and sharing but also a paradigm shift in application design to ensure the sustainability of developments by guaranteeing a certain independence of the applications to the profound modifications of the architectures: it is the passage from optimal performance to the portability of performance. It is the challenge of this book to demonstrate by example the approach that one can adopt for the development of applications offering performance portability in spite of the profound changes of the computing architectures." — Christophe Calvin, CEA, Fundamental Research Division, Saclay, France "Three editors, one from each of the High Performance Computer Centers at Lawrence Berkeley, Argonne, and Oak Ridge National Laboratories, have compiled a very useful set of chapters aimed at describing software developments for the next generation exa-scale computers. Such a book is needed for scientists and engineers to see where the field is going and how they will be able to exploit such architectures for their own work. The book will also benefit students as it provides insights into how to develop software for such computer architectures. Overall, this book fills an important need in showing how to design and implement algorithms for exa-scale architectures which are heterogeneous and have unique memory systems. The book discusses issues with developing user codes for these architectures and how to address these issues including actual coding examples.’ — Dr. David A. Dixon, Robert Ramsay Chair, The University of Alabama, Tuscaloosa, Alabama, USA
## Introduction to Scientific and Technical Computing

Created to help scientists and engineers write computer code, this practical book addresses the important tools and techniques that are necessary for scientific computing, but which are not yet commonplace in science and engineering curricula. This book contains chapters summarizing the most important topics that computational researchers need to know about. It leverages the viewpoints of passionate experts involved with scientific computing courses around the globe and aims to be a starting point for new computational scientists and a reference for the experienced. Each contributed chapter focuses on a specific tool or skill, providing the content needed to provide a working knowledge of the topic in about one day. While many individual books on specific computing topics exist, none is explicitly focused on getting technical professionals and students up and running immediately across a variety of computational areas.
## Introduction to Modeling and Simulation with MATLAB® and Python

Introduction to Modeling and Simulation with MATLAB and Python is intended for students and professionals in science, social science, and engineering that wish to learn the principles of computer modeling, as well as basic programming skills. The book content focuses on meeting a set of basic modeling and simulation competencies that were developed as part of several National Science Foundation grants. Even though computer science students are much more expert programmers, they are not often given the opportunity to see how those skills are being applied to solve complex science and engineering problems and may also not be aware of the libraries used by scientists to create those models. The book interleaves chapters on modeling concepts and related exercises with programming concepts and exercises. The authors start with an introduction to modeling and its importance to current practices in the sciences and engineering. They introduce each of the programming environments and the syntax used to represent variables and compute mathematical equations and functions. As students gain more programming expertise, the authors return to modeling concepts, providing starting code for a variety of exercises where students add additional code to solve the problem and provide an analysis of the outcomes. In this way, the book builds both modeling and programming expertise with a "just-in-time" approach so that by the end of the book, students can take on relatively simple modeling example on their own. Each chapter is supplemented with references to additional reading, tutorials, and exercises that guide students to additional help and allows them to practice both their programming and analytical modeling skills. In addition, each of the programming related chapters is divided into two parts – one for MATLAB and one for Python. In these chapters, the authors also refer to additional online tutorials that students can use if they are having difficulty with any of the topics. The book culminates with a set of final project exercise suggestions that incorporate both the modeling and programming skills provided in the rest of the volume. Those projects could be undertaken by individuals or small groups of students. The companion website at http://www.intromodeling.com provides updates to instructions when there are substantial changes in software versions, as well as electronic copies of exercises and the related code. The website also offers a space where people can suggest additional projects they are willing to share as well as comments on the existing projects and exercises throughout the book. Solutions and lecture notes will also be available for qualifying instructors.
## Combinatorial Scientific Computing

Combinatorial Scientific Computing explores the latest research on creating algorithms and software tools to solve key combinatorial problems on large-scale high-performance computing architectures. It includes contributions from international researchers who are pioneers in designing software and applications for high-performance computing systems. The book offers a state-of-the-art overview of the latest research, tool development, and applications. It focuses on load balancing and parallelization on high-performance computers, large-scale optimization, algorithmic differentiation of numerical simulation code, sparse matrix software tools, and combinatorial challenges and applications in large-scale social networks. The authors unify these seemingly disparate areas through a common set of abstractions and algorithms based on combinatorics, graphs, and hypergraphs. Combinatorial algorithms have long played a crucial enabling role in scientific and engineering computations and their importance continues to grow with the demands of new applications and advanced architectures. By addressing current challenges in the field, this volume sets the stage for the accelerated development and deployment of fundamental enabling technologies in high-performance scientific computing.
## Probability and Statistics for Computer Scientists, Second Edition

Student-Friendly Coverage of Probability, Statistical Methods, Simulation, and Modeling Tools Incorporating feedback from instructors and researchers who used the previous edition, Probability and Statistics for Computer Scientists, Second Edition helps students understand general methods of stochastic modeling, simulation, and data analysis; make optimal decisions under uncertainty; model and evaluate computer systems and networks; and prepare for advanced probability-based courses. Written in a lively style with simple language, this classroom-tested book can now be used in both one- and two-semester courses. New to the Second Edition Axiomatic introduction of probability Expanded coverage of statistical inference, including standard errors of estimates and their estimation, inference about variances, chi-square tests for independence and goodness of fit, nonparametric statistics, and bootstrap More exercises at the end of each chapter Additional MATLAB® codes, particularly new commands of the Statistics Toolbox In-Depth yet Accessible Treatment of Computer Science-Related Topics Starting with the fundamentals of probability, the text takes students through topics heavily featured in modern computer science, computer engineering, software engineering, and associated fields, such as computer simulations, Monte Carlo methods, stochastic processes, Markov chains, queuing theory, statistical inference, and regression. It also meets the requirements of the Accreditation Board for Engineering and Technology (ABET). Encourages Practical Implementation of Skills Using simple MATLAB commands (easily translatable to other computer languages), the book provides short programs for implementing the methods of probability and statistics as well as for visualizing randomness, the behavior of random variables and stochastic processes, convergence results, and Monte Carlo simulations. Preliminary knowledge of MATLAB is not required. Along with numerous computer science applications and worked examples, the text presents interesting facts and paradoxical statements. Each chapter concludes with a short summary and many exercises.

Full PDF eBook Download Free

Author: Georg Hager,Gerhard Wellein

Publisher: CRC Press

ISBN: 9781439811931

Category: Computers

Page: 356

View: 1739

Author: Georg Hager

Publisher: CRC Press

ISBN: 9781138470897

Category:

Page: N.A

View: 3623

*Programming and Applications*

Author: John Levesque,Gene Wagenbreth

Publisher: CRC Press

ISBN: 9781420077063

Category: Computers

Page: 244

View: 8575

*From Petascale toward Exascale*

Author: Jeffrey S. Vetter

Publisher: CRC Press

ISBN: 1351103954

Category: Computers

Page: 730

View: 638

Author: Kalyan S. Perumalla

Publisher: CRC Press

ISBN: 1439873402

Category: Computers

Page: 325

View: 692

*Enabling Extreme-Scale Scientific Insight*

Author: E. Wes Bethel,Hank Childs,Charles Hansen

Publisher: CRC Press

ISBN: 1439875731

Category: Computers

Page: 520

View: 302

Author: Jakub Kurzak,David A. Bader,Jack Dongarra

Publisher: CRC Press

ISBN: 1439825378

Category: Computers

Page: 514

View: 7764

*Algorithms and Applications*

Author: David A. Bader

Publisher: CRC Press

ISBN: 9781584889106

Category: Computers

Page: 616

View: 8570

Author: Prabhat,Quincey Koziol

Publisher: CRC Press

ISBN: 1466582340

Category: Computers

Page: 434

View: 1545

Author: Matthew J. Sottile,Timothy G. Mattson,Craig E Rasmussen

Publisher: CRC Press

ISBN: 9781420072143

Category: Mathematics

Page: 344

View: 5421

*Modern Systems and Practices*

Author: Thomas Sterling,Matthew Anderson,Maciej Brodowicz

Publisher: Morgan Kaufmann

ISBN: 0124202152

Category: Computers

Page: 718

View: 8387

Author: Kevin Dowd,Charles R. Severance

Publisher: Oreilly & Associates Incorporated

ISBN: 9781565923126

Category: Computers

Page: 446

View: 6634

*Problems, Methods, and Solutions*

Author: M. A. H. Dempster,Juho Kanniainen,John Keane,Erik Vynckier

Publisher: CRC Press

ISBN: 1315354691

Category: Computers

Page: 614

View: 1808

*Essential Concepts, Principles, and Problem Solving*

Author: Jose Garrido

Publisher: CRC Press

ISBN: 1439867399

Category: Mathematics

Page: 329

View: 1325

*A Situational Awareness Approach with Linux*

Author: Igor Ljubuncic

Publisher: Morgan Kaufmann

ISBN: 0128010649

Category: Computers

Page: 320

View: 3514

*Scalability and Performance Portability*

Author: Tjerk P. Straatsma,Katerina B. Antypas,Timothy J. Williams

Publisher: CRC Press

ISBN: 1351999249

Category: Computers

Page: 582

View: 8133

Author: Frank T. Willmore,Eric Jankowski,Coray Colina

Publisher: CRC Press

ISBN: 1315351854

Category: Computers

Page: 303

View: 9258

Author: Steven I. Gordon,Brian Guilfoos

Publisher: CRC Press

ISBN: 1498773907

Category: Computers

Page: 192

View: 8300

Author: Uwe Naumann,Olaf Schenk

Publisher: CRC Press

ISBN: 1439827354

Category: Computers

Page: 600

View: 1133

Author: Michael Baron

Publisher: CRC Press

ISBN: 1498760600

Category: Mathematics

Page: 449

View: 6185