Hyperbolic Differential Operators And Related Problems

Author: Vincenzo Ancona,Jean Vaillant

Publisher: CRC Press

ISBN: 9780203911143

Category: Mathematics

Page: 388

View: 5753

Presenting research from more than 30 international authorities, this reference provides a complete arsenal of tools and theorems to analyze systems of hyperbolic partial differential equations. The authors investigate a wide variety of problems in areas such as thermodynamics, electromagnetics, fluid dynamics, differential geometry, and topology. Renewing thought in the field of mathematical physics, Hyperbolic Differential Operators defines the notion of pseudosymmetry for matrix symbols of order zero as well as the notion of time function. Surpassing previously published material on the topic, this text is key for researchers and mathematicians specializing in hyperbolic, Schrödinger, Einstein, and partial differential equations; complex analysis; and mathematical physics.
Posted in Mathematics

Phase Space Analysis of Partial Differential Equations

Author: Antonio Bove,Ferruccio Colombini,Daniele Del Santo

Publisher: Springer Science & Business Media

ISBN: 9780817645212

Category: Mathematics

Page: 329

View: 3562

Covers phase space analysis methods, including microlocal analysis, and their applications to physics Treats the linear and nonnlinear aspects of the theory of PDEs Original articles are self-contained with full proofs; survey articles give a quick and direct introduction to selected topics evolving at a fast pace Excellent reference and resource for grad students and researchers in PDEs and related fields
Posted in Mathematics

Cauchy Problem for Differential Operators with Double Characteristics

Non-Effectively Hyperbolic Characteristics

Author: Tatsuo Nishitani

Publisher: Springer

ISBN: 3319676121

Category: Mathematics

Page: 213

View: 1179

Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for differential operators with non-effectively hyperbolic double characteristics. Previously scattered over numerous different publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem. A doubly characteristic point of a differential operator P of order m (i.e. one where Pm = dPm = 0) is effectively hyperbolic if the Hamilton map FPm has real non-zero eigen values. When the characteristics are at most double and every double characteristic is effectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms. If there is a non-effectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between −Pμj and Pμj , where iμj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 × 4 Jordan block, the spectral structure of FPm is insufficient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role.
Posted in Mathematics

Partial Differential Equations IV

Microlocal Analysis and Hyperbolic Equations

Author: Yu.V. Egorov,M.A. Shubin

Publisher: Springer Science & Business Media

ISBN: 3662092077

Category: Mathematics

Page: 244

View: 9082

A two-part monograph covering recent research in an important field, previously scattered in numerous journals, including the latest results in the theory of mixed problems for hyperbolic operators. The book is hence of immense value to graduate students and researchers in partial differential equations and theoretical physics.
Posted in Mathematics

Progress in Partial Differential Equations

Asymptotic Profiles, Regularity and Well-Posedness

Author: Michael Reissig,Michael Ruzhansky

Publisher: Springer Science & Business Media

ISBN: 3319001256

Category: Mathematics

Page: 447

View: 6017

Progress in Partial Differential Equations is devoted to modern topics in the theory of partial differential equations. It consists of both original articles and survey papers covering a wide scope of research topics in partial differential equations and their applications. The contributors were participants of the 8th ISAAC congress in Moscow in 2011 or are members of the PDE interest group of the ISAAC society. This volume is addressed to graduate students at various levels as well as researchers in partial differential equations and related fields. The readers will find this an excellent resource of both introductory and advanced material. The key topics are: • Linear hyperbolic equations and systems (scattering, symmetrisers) • Non-linear wave models (global existence, decay estimates, blow-up) • Evolution equations (control theory, well-posedness, smoothing) • Elliptic equations (uniqueness, non-uniqueness, positive solutions) • Special models from applications (Kirchhoff equation, Zakharov-Kuznetsov equation, thermoelasticity)
Posted in Mathematics

Hyperbolic Partial Differential Equations and Geometric Optics

Author: Jeffrey Rauch

Publisher: American Mathematical Soc.

ISBN: 0821872915

Category: Mathematics

Page: 363

View: 1496

This book introduces graduate students and researchers in mathematics and the sciences to the multifaceted subject of the equations of hyperbolic type, which are used, in particular, to describe propagation of waves at finite speed. Among the topics carefully presented in the book are nonlinear geometric optics, the asymptotic analysis of short wavelength solutions, and nonlinear interaction of such waves. Studied in detail are the damping of waves, resonance, dispersive decay, and solutions to the compressible Euler equations with dense oscillations created by resonant interactions. Many fundamental results are presented for the first time in a textbook format. In addition to dense oscillations, these include the treatment of precise speed of propagation and the existence and stability questions for the three wave interaction equations. One of the strengths of this book is its careful motivation of ideas and proofs, showing how they evolve from related, simpler cases. This makes the book quite useful to both researchers and graduate students interested in hyperbolic partial differential equations. Numerous exercises encourage active participation of the reader. The author is a professor of mathematics at the University of Michigan. A recognized expert in partial differential equations, he has made important contributions to the transformation of three areas of hyperbolic partial differential equations: nonlinear microlocal analysis, the control of waves, and nonlinear geometric optics.
Posted in Mathematics

Differential Operators and Related Topics

Proceedings of the Mark Krein International Conference on Operator Theory and Applications, Odessa, Ukraine, August 18-22, 1997

Author: V. M. Adami͡an,Israel Gohberg,M. Gorbachuk,V. Gorbachuk,M. A. Kaashoek,H. Langer,G. Popov

Publisher: Springer Science & Business Media

ISBN: 9783764362874

Category: Mathematics

Page: 420

View: 9781

The present book is the first of the two volume proceedings of the Mark Krein International Conference on Operator Theory and Applications. This conference, which was dedicated to the 90th anniversary of the prominent mathematician Mark Krein, was held in Odessa, Ukraine, from August 18-22, 1997. The conference focused on the main ideas, methods, results, and achievements of M. G. Krein. This first volume is devoted to the theory of differential operators and related topics. It opens with a description of the conference, biographical material and a number of survey papers about the work of M. G. Krein. The main part of the book consists of original research papers presenting the state of the art in the area of differential operators. The second volume of these proceedings, entitled Operator Theory and Related Topics, concerns the other aspects of the conference. The two volumes will be of interest to a wide range of readership in pure and applied mathematics, physics and engineering sciences.
Posted in Mathematics

Partial Differential Equations in Clifford Analysis

Author: Elena Obolashvili

Publisher: CRC Press

ISBN: 9780582317499

Category: Mathematics

Page: 160

View: 5670

Clifford analysis represents one of the most remarkable fields of modern mathematics. With the recent finding that almost all classical linear partial differential equations of mathematical physics can be set in the context of Clifford analysis-and that they can be obtained without applying any physical laws-it appears that Clifford analysis itself can suggest new equations or new generalizations of classical equations that may have some physical content. Partial Differential Equations in Clifford Analysis considers-in a multidimensional space-elliptic, hyperbolic, and parabolic operators related to Helmholtz, Klein-Gordon, Maxwell, Dirac, and heat equations. The author addresses two kinds of parabolic operators, both related to the second-order parabolic equations whose principal parts are the Laplacian and d'Alembertian: an elliptic-type parabolic operator and a hyperbolic-type parabolic operator. She obtains explicit integral representations of solutions to various boundary and initial value problems and their properties and solves some two-dimensional and non-local problems. Written for the specialist but accessible to non-specialists as well, Partial Differential Equations in Clifford Analysis presents new results, reformulations, refinements, and extensions of familiar material in a manner that allows the reader to feel and touch every formula and problem. Mathematicians and physicists interested in boundary and initial value problems, partial differential equations, and Clifford analysis will find this monograph a refreshing and insightful study that helps fill a void in the literature and in our knowledge.
Posted in Mathematics

Mathematical Reviews

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 9574

Posted in Mathematics

Hyperbolic Equations and Related Topics

Proceedings of the Taniguchi International Symposium, Katata and Kyoto, 1984

Author: Sigeru Mizohata

Publisher: Academic Press

ISBN: 1483269256

Category: Mathematics

Page: 458

View: 6418

Hyperbolic Equations and Related Topics covers the proceedings of the Taniguchi International Symposium, held in Katata, Japan on August 27-31, 1984 and in Kyoto, Japan on September 3-5, 1984. The book focuses on the mathematical analyses involved in hyperbolic equations. The selection first elaborates on complex vector fields; holomorphic extension of CR functions and related problems; second microlocalization and propagation of singularities for semi-linear hyperbolic equations; and scattering matrix for two convex obstacles. Discussions focus on the construction of asymptotic solutions, singular vector fields and Leibniz formula, second microlocalization along a Lagrangean submanifold, and hypo-analytic structures. The text then ponders on the Cauchy problem for effectively hyperbolic equations and for uniformly diagonalizable hyperbolic systems in Gevrey classes. The book takes a look at generalized Hamilton flows and singularities of solutions of the hyperbolic Cauchy problem and analytic and Gevrey well-posedness of the Cauchy problem for second order weakly hyperbolic equations with coefficients irregular in time. The selection is a dependable reference for researchers interested in hyperbolic equations.
Posted in Mathematics

Inverse Problems and Related Topics

Author: Gen Nakamura,Saburou Saitoh,Jin Kean Seo

Publisher: CRC Press

ISBN: 9781584881919

Category: Mathematics

Page: 248

View: 4728

Inverse problems arise in many disciplines and hold great importance to practical applications. However, sound new methods are needed to solve these problems. Over the past few years, Japanese and Korean mathematicians have obtained a number of very interesting and unique results in inverse problems. Inverse Problems and Related Topics compiles papers authored by some of the top researchers in Korea and Japan. It presents a number of original and useful results and offers a unique opportunity to explore the current trends of research in inverse problems in these countries. Highlighting the existence and active work of several Japanese and Korean groups, it also serves as a guide to those seeking future scientific exchange with researchers in these countries.
Posted in Mathematics

Hyperbolic Problems and Regularity Questions

Author: Mariarosaria Padula,Luisa Zanghirati

Publisher: Springer Science & Business Media

ISBN: 3764374519

Category: Mathematics

Page: 231

View: 9070

This book discusses new challenges in the quickly developing field of hyperbolic problems. Particular emphasis lies on the interaction between nonlinear partial differential equations, functional analysis and applied analysis as well as mechanics. The book originates from a recent conference focusing on hyperbolic problems and regularity questions. It is intended for researchers in functional analysis, PDE, fluid dynamics and differential geometry.
Posted in Mathematics

Bibliographic Index

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Bibliographical literature

Page: 26

View: 3524

Posted in Bibliographical literature

Control Theory for Partial Differential Equations: Volume 2, Abstract Hyperbolic-like Systems Over a Finite Time Horizon

Continuous and Approximation Theories

Author: Irena Lasiecka,Roberto Triggiani

Publisher: Cambridge University Press

ISBN: 9780521584012

Category: Mathematics

Page: 1067

View: 1490

Originally published in 2000, this is the second volume of a comprehensive two-volume treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. Both continuous theory and numerical approximation theory are included. The authors use an abstract space, operator theoretic approach, which is based on semigroups methods, and which unifies across a few basic classes of evolution. The various abstract frameworks are motivated by, and ultimately directed to, partial differential equations with boundary/point control. Volume 2 is focused on the optimal control problem over a finite time interval for hyperbolic dynamical systems. A few abstract models are considered, each motivated by a particular canonical hyperbolic dynamics. It presents numerous fascinating results. These volumes will appeal to graduate students and researchers in pure and applied mathematics and theoretical engineering with an interest in optimal control problems.
Posted in Mathematics

Asymptotic Methods for Investigating Quasiwave Equations of Hyperbolic Type

Author: Yuri A. Mitropolsky,G. Khoma,M. Gromyak

Publisher: Springer Science & Business Media

ISBN: 9780792345299

Category: Mathematics

Page: 214

View: 6281

The theory of partial differential equations is a wide and rapidly developing branch of contemporary mathematics. Problems related to partial differential equations of order higher than one are so diverse that a general theory can hardly be built up. There are several essentially different kinds of differential equations called elliptic, hyperbolic, and parabolic. Regarding the construction of solutions of Cauchy, mixed and boundary value problems, each kind of equation exhibits entirely different properties. Cauchy problems for hyperbolic equations and systems with variable coefficients have been studied in classical works of Petrovskii, Leret, Courant, Gording. Mixed problems for hyperbolic equations were considered by Vishik, Ladyzhenskaya, and that for general two dimensional equations were investigated by Bitsadze, Vishik, Gol'dberg, Ladyzhenskaya, Myshkis, and others. In last decade the theory of solvability on the whole of boundary value problems for nonlinear differential equations has received intensive development. Significant results for nonlinear elliptic and parabolic equations of second order were obtained in works of Gvazava, Ladyzhenskaya, Nakhushev, Oleinik, Skripnik, and others. Concerning the solvability in general of nonlinear hyperbolic equations, which are connected to the theory of local and nonlocal boundary value problems for hyperbolic equations, there are only partial results obtained by Bronshtein, Pokhozhev, Nakhushev.
Posted in Mathematics

Nonlinear Parabolic Equations and Hyperbolic-Parabolic Coupled Systems

Author: Songmu Zheng

Publisher: CRC Press

ISBN: 9780582244887

Category: Mathematics

Page: 272

View: 3650

This monograph is devoted to the global existence, uniqueness and asymptotic behaviour of smooth solutions to both initial value problems and initial boundary value problems for nonlinear parabolic equations and hyperbolic parabolic coupled systems. Most of the material is based on recent research carried out by the author and his collaborators. The book can be divided into two parts. In the first part, the results on decay of solutions to nonlinear parabolic equations and hyperbolic parabolic coupled systems are obtained, and a chapter is devoted to the global existence of small smooth solutions to fully nonlinear parabolic equations and quasilinear hyperbolic parabolic coupled systems. Applications of the results to nonlinear thermoelasticity and fluid dynamics are also shown. Some nonlinear parabolic equations and coupled systems arising from the study of phase transitions are investigated in the second part of the book. The global existence, uniqueness and asymptotic behaviour of smooth solutions with arbitrary initial data are obtained. The final chapter is further devoted to related topics: multiplicity of equilibria and the existence of a global attractor, inertial manifold and inertial set. A knowledge of partial differential equations and Sobolev spaces is assumed. As an aid to the reader, the related concepts and results are collected and the relevant references given in the first chapter. The work will be of interest to researchers and graduate students in pure and applied mathematics, mathematical physics and applied sciences.
Posted in Mathematics

Hyperbolic Conservation Laws and Related Analysis with Applications

Edinburgh, September 2011

Author: Gui-Qiang G. Chen,Helge Holden,Kenneth H. Karlsen

Publisher: Springer Science & Business Media

ISBN: 3642390072

Category: Mathematics

Page: 384

View: 4283

This book presents thirteen papers, representing the most significant advances and current trends in nonlinear hyperbolic conservation laws and related analysis with applications. Topics covered include a survey on multidimensional systems of conservation laws as well as novel results on liquid crystals, conservation laws with discontinuous flux functions, and applications to sedimentation. Also included are articles on recent advances in the Euler equations and the Navier-Stokes-Fourier-Poisson system, in addition to new results on collective phenomena described by the Cucker-Smale model. The Workshop on Hyperbolic Conservation Laws and Related Analysis with Applications at the International Centre for Mathematical Sciences (Edinburgh, UK) held in Edinburgh, September 2011, produced this fine collection of original research and survey articles. Many leading mathematicians attended the event and submitted their contributions for this volume. It is addressed to researchers and graduate students interested in partial differential equations and related analysis with applications.
Posted in Mathematics

Pseudo-Differential Operators: Analysis, Applications and Computations

Author: Luigi Rodino,M. W. Wong,Hongmei Zhu

Publisher: Springer Science & Business Media

ISBN: 9783034800495

Category: Mathematics

Page: 308

View: 5163

This volume consists of eighteen peer-reviewed papers related to lectures on pseudo-differential operators presented at the meeting of the ISAAC Group in Pseudo-Differential Operators (IGPDO) held at Imperial College London on July 13-18, 2009. Featured in this volume are the analysis, applications and computations of pseudo-differential operators in mathematics, physics and signal analysis. This volume is a useful complement to the volumes “Advances in Pseudo-Differential Operators”, “Pseudo-Differential Operators and Related Topics”, “Modern Trends in Pseudo-Differential Operators”, “New Developments in Pseudo-Differential Operators” and “Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations” published in the same series in, respectively, 2004, 2006, 2007, 2009 and 2010.
Posted in Mathematics

Partial Differential Equations I

Basic Theory

Author: Michael Eugene Taylor,Eberhard Zeidler

Publisher: Springer Science & Business Media

ISBN: 9780387946535

Category: Mathematics

Page: 563

View: 9791

This book is intended to be a comprehensive introduction to the subject of partial differential equations. It should be useful to graduate students at all levels beyond that of a basic course in measure theory. It should also be of interest to professional mathematicians in analysis, mathematical physics, and differential geometry. This work will be divided into three volumes, the first of which focuses on the theory of ordinary differential equations and a survey of basic linear PDEs.
Posted in Mathematics