*Villa de Leyva, Colombia, 9-27 July 2001*

Author: Alexander Cardona

Publisher: World Scientific

ISBN: 9789812705068

Category: Algebraic topology

Page: 482

View: 8553

Skip to content
#
Search Results for: geometric-and-topological-methods-for-quantum-field-theory

## Proceedings of the Summer School Geometric and Topological Methods for Quantum Field Theory

This volume offers an introduction to recent developments in several active topics of research at the interface between geometry, topology and quantum field theory. These include Hopf algebras underlying renormalization schemes in quantum field theory, noncommutative geometry with applications to index theory on one hand and the study of aperiodic solids on the other, geometry and topology of low dimensional manifolds with applications to topological field theory, Chern-Simons supergravity and the anti de Sitter/conformal field theory correspondence. It comprises seven lectures organized around three main topics, noncommutative geometry, topological field theory, followed by supergravity and string theory, complemented by some short communications by young participants of the school.
## Geometric and Topological Methods for Quantum Field Theory

Aimed at graduate students in physics and mathematics, this book provides an introduction to recent developments in several active topics at the interface between algebra, geometry, topology and quantum field theory. The first part of the book begins with an account of important results in geometric topology. It investigates the differential equation aspects of quantum cohomology, before moving on to noncommutative geometry. This is followed by a further exploration of quantum field theory and gauge theory, describing AdS/CFT correspondence, and the functional renormalization group approach to quantum gravity. The second part covers a wide spectrum of topics on the borderline of mathematics and physics, ranging from orbifolds to quantum indistinguishability and involving a manifold of mathematical tools borrowed from geometry, algebra and analysis. Each chapter presents introductory material before moving on to more advanced results. The chapters are self-contained and can be read independently of the rest.
## Geometric, Algebraic and Topological Methods for Quantum Field Theory

Based on lectures held at the 8th edition of the series of summer schools in Villa de Leyva since 1999, this book presents an introduction to topics of current interest at the interface of geometry, algebra, analysis, topology and theoretical physics. It is aimed at graduate students and researchers in physics or mathematics, and offers an introduction to the topics discussed in the two weeks of the summer school: operator algebras, conformal field theory, black holes, relativistic fluids, Lie groupoids and Lie algebroids, renormalization methods, spectral geometry and index theory for pseudo-differential operators.
## Geometric and Topological Methods for Quantum Field Theory

This volume offers an introduction to recent developments in several active topics of research at the interface between geometry, topology and quantum field theory. These include Hopf algebras underlying renormalization schemes in quantum field theory, noncommutative geometry with applications to index theory on one hand and the study of aperiodic solids on the other, geometry and topology of low dimensional manifolds with applications to topological field theory, Chern-Simons supergravity and the anti de Sitter/conformal field theory correspondence. It comprises seven lectures organized around three main topics, noncommutative geometry, topological field theory, followed by supergravity and string theory, complemented by some short communications by young participants of the school. Contents:Noncommutative Geometry:Hopf Algebras in Noncommutative Geometry (J C Várilly)The Noncommutative Geometry of Aperiodic Solids (J Bellissard)Noncommutative Geometry and Abstract Integration Theory (M-T Benameur)Topological Field Theory:Introduction to Quantum Invariants of 3-Manifolds, Topological Quantum Field Theories and Modular Categories (C Blanchet)An Introduction to Donaldson–Witten Theory (M Mariño)Supergravity and String Theory:(Super)-Gravities Beyond 4 Dimensions (J Zanelli)Introductory Lectures on String Theory and the AdS/CFT Correspondence (A Pankiewicz & S Theisen)Short Communications:Group Contractions and Its Consequences Upon Representations of Different Spatial Symmetry Groups (M Ayala-Sánchez & R W Haase)Phase Anomalies as Trace Anomalies in Chern–Simons Theory (A Cardona)Deligne Cohomology for Orbifolds, Discrete Torsion and B-Fields (E Lupercio & B Uribe) Readership: Graduate students and researchers in theoretical and mathematical physics, as well as geometry and topology. Keywords:
## Geometric and Topological Methods for Quantum Field Theory

"Based on lectures given at the renowed Villa de Leyva summer school, this book provides a unique presentation of modern geometric methods in quantum field theory. Written by experts, it enables readers to enter some of the most fascinating research topics in this subject. Covering a series of topics on geometry, topology, algebra, number theory methods and their applications to quantum field theory, the book covers topics such as Dirac structures, holomorphic bundles and stability, Feynman integrals, geometric aspects of quantum field theory and the standard model, spectral and Riemannian geometry and index theory. This is a valuable guide for graduate students and researchers in physics and mathematics wanting to enter this interesting research field at the borderline between mathematics and physics"--
## Geometric, Algebraic and Topological Methods for Quantum Field Theory

Based on lectures held at the 7th Villa de Leyva summer school, this book presents an introduction to topics of current interest in the interface of geometry, topology and physics. It is aimed at graduate students in physics or mathematics with interests in geometric, algebraic as well as topological methods and their applications to quantum field theory. This volume contains the written notes corresponding to lectures given by experts in the field. They cover current topics of research in a way that is suitable for graduate students of mathematics or physics interested in the recent developments and interactions between geometry, topology and physics. The book also contains contributions by younger participants, displaying the ample range of topics treated in the school. A key feature of the present volume is the provision of a pedagogical presentation of rather advanced topics, in a way which is suitable for both mathematicians and physicists.
## Differentialgeometrie, Topologie und Physik

Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.
## Geometric Methods for Quantum Field Theory

Both mathematics and mathematical physics have many active areas of research where the interplay between geometry and quantum field theory has proved extremely fruitful. Duality, gauge field theory, geometric quantization, SeibergOCoWitten theory, spectral properties and families of Dirac operators, and the geometry of loop groups offer some striking recent examples of modern topics which stand on the borderline between geometry and analysis on the one hand and quantum field theory on the other, where the physicist''s and the mathematician''s perspective complement each other, leading to new mathematical and physical concepts and results. This volume introduces the reader to some basic mathematical and physical tools and methods required to follow the recent developments in some active areas of mathematical physics, including duality, gauge field theory, geometric quantization, Seiberg-Witten theory, spectral properties and families of Dirac operators, and the geometry of loop groups. It comprises seven self-contained lectures, which should progressively give the reader a precise idea of some of the techniques used in these areas, as well as a few short communications presented by young participants at the school. Contents: Lectures: Introduction to Differentiable Manifolds and Symplectic Geometry (T Wurzbacher); Spectral Properties of the Dirac Operator and Geometrical Structures (O Hijazi); Quantum Theory of Fermion Systems: Topics Between Physics and Mathematics (E Langmann); Heat Equation and Spectral Geometry. Introduction for Beginners (K Wojciechowski); Renormalized Traces as a Geometric Tool (S Paycha); Concepts in Gauge Theory Leading to Electric-Magnetic Duality (T S Tsun); An Introduction to Seiberg-Witten Theory (H Ocampo); Short Communications: Remarks on Duality, Analytical Torsion and Gaussian Integration in Antisymmetric Field Theories (A Cardona); Multiplicative Anomaly for the e-Regularized Determinant (C Ducourtioux); On Cohomogeneity One Riemannian Manifolds (S M B Kashani); A Differentiable Calculus on the Space of Loops and Connections (M Reiris); Quantum Hall Conductivity and Topological Invariants (A Reyes); Determinant of the Dirac Operator Over the Interval [0, ] (F Torres-Ardila). Readership: Mathematicians and physicists."
## Facettenreiche Mathematik

Dieser Band versammelt zweiundzwanzig spannende Beiträge, in denen verschiedene Mathematikerinnen ihre Forschungsgebiete vorstellen. Dabei werden nur Schulkenntnisse in Mathematik vorausgesetzt, und der Bogen wird von klassischen Resultaten bis zur aktuellen Forschung gespannt. Das Buch vermittelt eindrucksvoll den Facettenreichtum der modernen Mathematik und lädt dazu ein, sich von der Faszination der Mathematikerinnen für ihre Forschungsgebiete anstecken zu lassen.
## Direkte Methoden der Variationsrechnung

## Quantum Field Theory and Topology

In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. It has many applications, first of all in quantum field theory, but increasingly also in other areas of physics. The main focus of this book is on the results of quantum field theory that are obtained by topological methods. Some aspects of the theory of condensed matter are also discussed. Part I is an introduction to quantum field theory: it discusses the basic Lagrangians used in the theory of elementary particles. Part II is devoted to the applications of topology to quantum field theory. Part III covers the necessary mathematical background in summary form. The book is aimed at physicists interested in applications of topology to physics and at mathematicians wishing to familiarize themselves with quantum field theory and the mathematical methods used in this field. It is accessible to graduate students in physics and mathematics.
## Distributionen Und Hilbertraumoperatoren

Das Buch bietet eine Einführung in die zum Studium der Theoretischen Physik notwendigen mathematischen Grundlagen. Der erste Teil des Buches beschäftigt sich mit der Theorie der Distributionen und vermittelt daneben einige Grundbegriffe der linearen Funktionalanalysis. Der zweite Teil baut darauf auf und gibt eine auf das Wesentliche beschränkte Einführung in die Theorie der linearen Operatoren in Hilbert-Räumen. Beide Teile werden von je einer Übersicht begleitet, die die zentralen Ideen und Begriffe knapp erläutert und den Inhalt kurz beschreibt. In den Anhängen werden einige grundlegende Konstruktionen und Konzepte der Funktionalanalysis dargestellt und wichtige Konsequenzen entwickelt.
## Topological Methods in Quantum Field Theories

## Geometric and Algebraic Topological Methods in Quantum Mechanics

- The book collects all the advanced methods of quantization in the last decade. - It presents in a compact way all the necessary up to date mathematical tools to be used in studying quantum problems.
## Conformal Field Theory and Topology

The aim of this book is to provide the reader with an introduction to conformal field theory and its applications to topology. The author starts with a description of geometric aspects of conformal field theory based on loop groups. By means of the holonomy of conformal field theory he defines topological invariants for knots and 3-manifolds. He also gives a brief treatment of Chern-Simons perturbation theory.
## Topology for Physicists

In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. Topology has profound relevance to quantum field theory-for example, topological nontrivial solutions of the classical equa tions of motion (solitons and instantons) allow the physicist to leave the frame work of perturbation theory. The significance of topology has increased even further with the development of string theory, which uses very sharp topologi cal methods-both in the study of strings, and in the pursuit of the transition to four-dimensional field theories by means of spontaneous compactification. Im portant applications of topology also occur in other areas of physics: the study of defects in condensed media, of singularities in the excitation spectrum of crystals, of the quantum Hall effect, and so on. Nowadays, a working knowledge of the basic concepts of topology is essential to quantum field theorists; there is no doubt that tomorrow this will also be true for specialists in many other areas of theoretical physics. The amount of topological information used in the physics literature is very large. Most common is homotopy theory. But other subjects also play an important role: homology theory, fibration theory (and characteristic classes in particular), and also branches of mathematics that are not directly a part of topology, but which use topological methods in an essential way: for example, the theory of indices of elliptic operators and the theory of complex manifolds.
## Der absolute Differentialkalkül und seine Anwendungen in Geometrie und Physik

## The Universal Coefficient Theorem and Quantum Field Theory

This thesis describes a new connection between algebraic geometry, topology, number theory and quantum field theory. It offers a pedagogical introduction to algebraic topology, allowing readers to rapidly develop basic skills, and it also presents original ideas to inspire new research in the quest for dualities. Its ambitious goal is to construct a method based on the universal coefficient theorem for identifying new dualities connecting different domains of quantum field theory. This thesis opens a new area of research in the domain of non-perturbative physics—one in which the use of different coefficient structures in (co)homology may lead to previously unknown connections between different regimes of quantum field theories. The origin of dualities is an issue in fundamental physics that continues to puzzle the research community with unexpected results like the AdS/CFT duality or the ER-EPR conjecture. This thesis analyzes these observations from a novel and original point of view, mainly based on a fundamental connection between number theory and topology. Beyond its scientific qualities, it also offers a pedagogical introduction to advanced mathematics and its connection with physics. This makes it a valuable resource for students in mathematical physics and researchers wanting to gain insights into (co)homology theories with coefficients or the way in which Grothendieck's work may be connected with physics.

Full PDF eBook Download Free

*Villa de Leyva, Colombia, 9-27 July 2001*

Author: Alexander Cardona

Publisher: World Scientific

ISBN: 9789812705068

Category: Algebraic topology

Page: 482

View: 8553

Author: Hernan Ocampo,Eddy Pariguan,Sylvie Paycha

Publisher: Cambridge University Press

ISBN: 113948673X

Category: Science

Page: N.A

View: 7445

*Proceedings of the 2013 Villa de Leyva Summer School*

Author: Leonardo Cano,Alexander Cardona,Hern Ocampo,Andr F Reyes Lega

Publisher: World Scientific

ISBN: 9814730890

Category: Mathematics

Page: 384

View: 1971

Author: Alexander Cardona,Sylvie Paycha,Hernan Ocampo

Publisher: World Scientific

ISBN: 9814487678

Category: Mathematics

Page: 492

View: 1354

*Proceedings of the 2009 Villa de Leyva Summer School*

Author: Alexander Cardona,Iván Contreras,Andrés F. Reyes-Lega

Publisher: Cambridge University Press

ISBN: 1107026830

Category: Science

Page: 383

View: 5383

*Proceedings of the 2011 Villa de Leyva Summer School, Villa de Leyva, Colombia, 4-22 July 2011*

Author: Sylvie Payche

Publisher: World Scientific

ISBN: 9814460052

Category: Science

Page: 378

View: 3579

Author: Mikio Nakahara

Publisher: Springer-Verlag

ISBN: 3662453002

Category: Science

Page: 597

View: 8131

*Proceedings of the Summer School : Villa de Leyva, Colombia, 12-30 July 1999*

Author: Hernan Ocampo,Sylvie Paycha,Andres Reyes

Publisher: World Scientific

ISBN: 9812810579

Category: Electronic books

Page: 528

View: 3391

*Einblicke in die moderne mathematische Forschung für alle, die mehr von Mathematik verstehen wollen*

Author: Katrin Wendland,Annette Werner

Publisher: Springer-Verlag

ISBN: 3834881732

Category: Mathematics

Page: 469

View: 6088

*Ein Lehrbuch*

Author: Ph. Blanchard,E. Brüning

Publisher: Springer-Verlag

ISBN: 3709122600

Category: Science

Page: 280

View: 9082

Author: Albert S. Schwarz

Publisher: Springer Science & Business Media

ISBN: 366202943X

Category: Mathematics

Page: 276

View: 3261

*Mathematische Methoden Der Physik*

Author: Philippe Blanchard,Erwin Brüning

Publisher: Springer

ISBN: 9783211825075

Category: Science

Page: 375

View: 416

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Quantum field theory

Page: 171

View: 1088

Author: G. Giachetta,L. Mangiarotti,Gennadi? Aleksandrovich Sardanashvili

Publisher: World Scientific

ISBN: 9812561293

Category: Science

Page: 703

View: 7638

Author: Toshitake Kohno

Publisher: American Mathematical Soc.

ISBN: 9780821821305

Category: Mathematics

Page: 172

View: 6922

Author: Albert S. Schwarz

Publisher: Springer Science & Business Media

ISBN: 3662029987

Category: Mathematics

Page: 296

View: 8327

Author: Tullio Levi-Civita

Publisher: N.A

ISBN: N.A

Category: Calculus of tensors

Page: 310

View: 7785

*A Topological Guide for the Duality Seeker*

Author: Andrei-Tudor Patrascu

Publisher: Springer

ISBN: 3319461435

Category: Science

Page: 270

View: 2821