*Introduction to Protomodular and Mal’tsev Categories*

Author: Dominique Bourn

Publisher: Birkhäuser

ISBN: 3319572199

Category: Mathematics

Page: 106

View: 9260

Skip to content
#
Search Results for: from-groups-to-categorial-algebra-introduction-to-protomodular-and-maltsev-categories-compact-textbooks-in-mathematics

## From Groups to Categorial Algebra

This book gives a thorough and entirely self-contained, in-depth introduction to a specific approach to group theory, in a large sense of that word. The focus lie on the relationships which a group may have with other groups, via “universal properties”, a view on that group “from the outside”. This method of categorical algebra, is actually not limited to the study of groups alone, but applies equally well to other similar categories of algebraic objects. By introducing protomodular categories and Mal’tsev categories, which form a larger class, the structural properties of the category Gp of groups, show how they emerge from four very basic observations about the algebraic litteral calculus and how, studied for themselves at the conceptual categorical level, they lead to the main striking features of the category Gp of groups. Hardly any previous knowledge of category theory is assumed, and just a little experience with standard algebraic structures such as groups and monoids. Examples and exercises help understanding the basic definitions and results throughout the text.
## Quasigroups and loops

## Lectures on Formally Real Fields

Absolute values and their completions - like the p-adic number fields- play an important role in number theory. Krull's generalization of absolute values to valuations made applications in other branches of mathematics, such as algebraic geometry, possible. In valuation theory, the notion of a completion has to be replaced by that of the so-called Henselization. In this book, the theory of valuations as well as of Henselizations is developed. The presentation is based on the knowledge aquired in a standard graduate course in algebra. The last chapter presents three applications of the general theory -as to Artin's Conjecture on the p-adic number fields- that could not be obtained by the use of absolute values only.
## Galois Connections and Applications

Galois connections provide the order- or structure-preserving passage between two worlds of our imagination - and thus are inherent in hu man thinking wherever logical or mathematical reasoning about cer tain hierarchical structures is involved. Order-theoretically, a Galois connection is given simply by two opposite order-inverting (or order preserving) maps whose composition yields two closure operations (or one closure and one kernel operation in the order-preserving case). Thus, the "hierarchies" in the two opposite worlds are reversed or transported when passing to the other world, and going forth and back becomes a stationary process when iterated. The advantage of such an "adjoint situation" is that information about objects and relationships in one of the two worlds may be used to gain new information about the other world, and vice versa. In classical Galois theory, for instance, properties of permutation groups are used to study field extensions. Or, in algebraic geometry, a good knowledge of polynomial rings gives insight into the structure of curves, surfaces and other algebraic vari eties, and conversely. Moreover, restriction to the "Galois-closed" or "Galois-open" objects (the fixed points of the composite maps) leads to a precise "duality between two maximal subworlds".
## An Introduction to the Language of Category Theory

This textbook provides an introduction to elementary category theory, with the aim of making what can be a confusing and sometimes overwhelming subject more accessible. In writing about this challenging subject, the author has brought to bear all of the experience he has gained in authoring over 30 books in university-level mathematics. The goal of this book is to present the five major ideas of category theory: categories, functors, natural transformations, universality, and adjoints in as friendly and relaxed a manner as possible while at the same time not sacrificing rigor. These topics are developed in a straightforward, step-by-step manner and are accompanied by numerous examples and exercises, most of which are drawn from abstract algebra. The first chapter of the book introduces the definitions of category and functor and discusses diagrams,duality, initial and terminal objects, special types of morphisms, and some special types of categories,particularly comma categories and hom-set categories. Chapter 2 is devoted to functors and naturaltransformations, concluding with Yoneda's lemma. Chapter 3 presents the concept of universality and Chapter 4 continues this discussion by exploring cones, limits, and the most common categorical constructions – products, equalizers, pullbacks and exponentials (along with their dual constructions). The chapter concludes with a theorem on the existence of limits. Finally, Chapter 5 covers adjoints and adjunctions. Graduate and advanced undergraduates students in mathematics, computer science, physics, or related fields who need to know or use category theory in their work will find An Introduction to Category Theory to be a concise and accessible resource. It will be particularly useful for those looking for a more elementary treatment of the topic before tackling more advanced texts.
## Foundations of Commutative Rings and Their Modules

This book provides an introduction to the basics and recent developments of commutative algebra. A glance at the contents of the first five chapters shows that the topics covered are ones that usually are included in any commutative algebra text. However, the contents of this book differ significantly from most commutative algebra texts: namely, its treatment of the Dedekind–Mertens formula, the (small) finitistic dimension of a ring, Gorenstein rings, valuation overrings and the valuative dimension, and Nagata rings. Going further, Chapter 6 presents w-modules over commutative rings as they can be most commonly used by torsion theory and multiplicative ideal theory. Chapter 7 deals with multiplicative ideal theory over integral domains. Chapter 8 collects various results of the pullbacks, especially Milnor squares and D+M constructions, which are probably the most important example-generating machines. In Chapter 9, coherent rings with finite weak global dimensions are probed, and the local ring of weak global dimension two is elaborated on by combining homological tricks and methods of star operation theory. Chapter 10 is devoted to the Grothendieck group of a commutative ring. In particular, the Bass–Quillen problem is discussed. Finally, Chapter 11 aims to introduce relative homological algebra, especially where the related concepts of integral domains which appear in classical ideal theory are defined and investigated by using the class of Gorenstein projective modules. Each section of the book is followed by a selection of exercises of varying degrees of difficulty. This book will appeal to a wide readership from graduate students to academic researchers who are interested in studying commutative algebra.
## Geometric Invariant Theory

Geometric Invariant Theory (GIT) is developed in this text within the context of algebraic geometry over the real and complex numbers. This sophisticated topic is elegantly presented with enough background theory included to make the text accessible to advanced graduate students in mathematics and physics with diverse backgrounds in algebraic and differential geometry. Throughout the book, examples are emphasized. Exercises add to the reader’s understanding of the material; most are enhanced with hints. The exposition is divided into two parts. The first part, ‘Background Theory’, is organized as a reference for the rest of the book. It contains two chapters developing material in complex and real algebraic geometry and algebraic groups that are difficult to find in the literature. Chapter 1 emphasizes the relationship between the Zariski topology and the canonical Hausdorff topology of an algebraic variety over the complex numbers. Chapter 2 develops the interaction between Lie groups and algebraic groups. Part 2, ‘Geometric Invariant Theory’ consists of three chapters (3–5). Chapter 3 centers on the Hilbert–Mumford theorem and contains a complete development of the Kempf–Ness theorem and Vindberg’s theory. Chapter 4 studies the orbit structure of a reductive algebraic group on a projective variety emphasizing Kostant’s theory. The final chapter studies the extension of classical invariant theory to products of classical groups emphasizing recent applications of the theory to physics.
## Achieving Your Pinnacle: A Career Guide for Actuaries

Tom Miller recognized the need to write this book a few years ago, after reviewing postings on popular discussion pages frequented by actuaries. He was surprised and troubled by the magnitude of misinformation posted on these websites. Clearly actuaries and actuarial students posting this information are only trying to be helpful to one another, but they frequently lack the necessary experience and expertise to offer sound advice. Tom seeks to provide readers of his career guide with valuable insights regarding the actuarial employment market, covering topics such as choice of product specialization, how to conduct effective job searches, switching successfully from insurance to consulting and inside tips on what clients are really looking for when they interview you. Armed with deep knowledge and a unique perspective on the actuarial profession, Tom expects that this book will be a resource that will help you make better career decisions and “Achieve Your Pinnacle.”
## Quadratic and Hermitian Forms over Rings

From its birth (in Babylon?) till 1936 the theory of quadratic forms dealt almost exclusively with forms over the real field, the complex field or the ring of integers. Only as late as 1937 were the foundations of a theory over an arbitrary field laid. This was in a famous paper by Ernst Witt. Still too early, apparently, because it took another 25 years for the ideas of Witt to be pursued, notably by Albrecht Pfister, and expanded into a full branch of algebra. Around 1960 the development of algebraic topology and algebraic K-theory led to the study of quadratic forms over commutative rings and hermitian forms over rings with involutions. Not surprisingly, in this more general setting, algebraic K-theory plays the role that linear algebra plays in the case of fields. This book exposes the theory of quadratic and hermitian forms over rings in a very general setting. It avoids, as far as possible, any restriction on the characteristic and takes full advantage of the functorial aspects of the theory. The advantage of doing so is not only aesthetical: on the one hand, some classical proofs gain in simplicity and transparency, the most notable examples being the results on low-dimensional spinor groups; on the other hand new results are obtained, which went unnoticed even for fields, as in the case of involutions on 16-dimensional central simple algebras. The first chapter gives an introduction to the basic definitions and properties of hermitian forms which are used throughout the book.
## Eigenvalues, Multiplicities and Graphs

The arrangement of nonzero entries of a matrix, described by the graph of the matrix, limits the possible geometric multiplicities of the eigenvalues, which are far more limited by this information than algebraic multiplicities or the numerical values of the eigenvalues. This book gives a unified development of how the graph of a symmetric matrix influences the possible multiplicities of its eigenvalues. While the theory is richest in cases where the graph is a tree, work on eigenvalues, multiplicities and graphs has provided the opportunity to identify which ideas have analogs for non-trees, and those for which trees are essential. It gathers and organizes the fundamental ideas to allow students and researchers to easily access and investigate the many interesting questions in the subject.
## Rings, Polynomials, and Modules

This volume presents a collection of articles highlighting recent developments in commutative algebra and related non-commutative generalizations. It also includes an extensive bibliography and lists a substantial number of open problems that point to future directions of research in the represented subfields. The contributions cover areas in commutative algebra that have flourished in the last few decades and are not yet well represented in book form. Highlighted topics and research methods include Noetherian and non-Noetherian ring theory, module theory and integer-valued polynomials along with connections to algebraic number theory, algebraic geometry, topology and homological algebra. Most of the eighteen contributions are authored by attendees of the two conferences in commutative algebra that were held in the summer of 2016: “Recent Advances in Commutative Ring and Module Theory,” Bressanone, Italy; “Conference on Rings and Polynomials” Graz, Austria. There is also a small collection of invited articles authored by experts in the area who could not attend either of the conferences. Following the model of the talks given at these conferences, the volume contains a number of comprehensive survey papers along with related research articles featuring recent results that have not yet been published elsewhere.
## Bifurcations and Catastrophes

Based on a lecture course, this text gives a rigorous introduction to nonlinear analysis, dynamical systems and bifurcation theory including catastrophe theory. Wherever appropriate it emphasizes a geometrical or coordinate-free approach allowing a clear focus on the essential mathematical structures. It brings out features common to different branches of the subject while giving ample references for more advanced or technical developments.
## Exact Categories and Categories of Sheaves

## Group Rings and Class Groups

The first part of the book centers around the isomorphism problem for finite groups; i.e. which properties of the finite group G can be determined by the integral group ring ZZG ? The authors have tried to present the results more or less selfcontained and in as much generality as possible concerning the ring of coefficients. In the first section, the class sum correspondence and some related results are derived. This part is the proof of the subgroup rigidity theorem (Scott - Roggenkamp; Weiss) which says that a finite subgroup of the p-adic integral group ring of a finite p-group is conjugate to a subgroup of the finite group. A counterexample to the conjecture of Zassenhaus that group basis are rationally conjugate, is presented in the semilocal situation (Scott - Roggenkamp). To this end, an extended version of Clifford theory for p-adic integral group rings is presented. Moreover, several examples are given to demonstrate the complexity of the isomorphism problem. The second part of the book is concerned with various aspects of the structure of rings of integers as Galois modules. It begins with a brief overview of major results in the area; thereafter the majority of the text focuses on the use of the theory of Hopf algebras. It begins with a thorough and detailed treatment of the required foundational material and concludes with new and interesting applications to cyclotomic theory and to elliptic curves with complex multiplication. Examples are used throughout both for motivation, and also to illustrate new ideas.
## Categorical Foundations

The book offers categorical introductions to order, topology, algebra and sheaf theory, suitable for graduate students, teachers and researchers of pure mathematics.
## Extensions of Rings and Modules

The "extensions" of rings and modules have yet to be explored in detail in a research monograph. This book presents state of the art research and also stimulating new and further research. Broken into three parts, Part I begins with basic notions, terminology, definitions and a description of the classes of rings and modules. Part II considers the transference of conditions between a base ring or module and its extensions. And Part III utilizes the concept of a minimal essental extension with respect to a specific class (a hull). Mathematical interdisciplinary applications appear throughout. Major applications of the ring and module theory to Functional Analysis, especially C*-algebras, appear in Part III, make this book of interest to Algebra and Functional Analysis researchers. Notes and exercises at the end of every chapter, and open problems at the end of all three parts, lend this as an ideal textbook for graduate or advanced undergradate students.
## An Introduction to Catalan Numbers

This textbook provides an introduction to the Catalan numbers and their remarkable properties, along with their various applications in combinatorics. Intended to be accessible to students new to the subject, the book begins with more elementary topics before progressing to more mathematically sophisticated topics. Each chapter focuses on a specific combinatorial object counted by these numbers, including paths, trees, tilings of a staircase, null sums in Zn+1, interval structures, partitions, permutations, semiorders, and more. Exercises are included at the end of book, along with hints and solutions, to help students obtain a better grasp of the material. The text is ideal for undergraduate students studying combinatorics, but will also appeal to anyone with a mathematical background who has an interest in learning about the Catalan numbers. “Roman does an admirable job of providing an introduction to Catalan numbers of a different nature from the previous ones. He has made an excellent choice of topics in order to convey the flavor of Catalan combinatorics. [Readers] will acquire a good feeling for why so many mathematicians are enthralled by the remarkable ubiquity and elegance of Catalan numbers.” - From the foreword by Richard Stanley
## Actuarial Mathematics

These lecture notes from the 1985 AMS Short Course examine a variety of topics from the contemporary theory of actuarial mathematics. Recent clarification in the concepts of probability and statistics has laid a much richer foundation for this theory. Other factors that have shaped the theory include the continuing advances in computer science, the flourishing mathematical theory of risk, developments in stochastic processes, and recent growth in the theory of finance. In turn, actuarial concepts have been applied to other areas such as biostatistics, demography, economic, and reliability engineering.
## Differential Equations: Methods and Applications

This book presents a variety of techniques for solving ordinary differential equations analytically and features a wealth of examples. Focusing on the modeling of real-world phenomena, it begins with a basic introduction to differential equations, followed by linear and nonlinear first order equations and a detailed treatment of the second order linear equations. After presenting solution methods for the Laplace transform and power series, it lastly presents systems of equations and offers an introduction to the stability theory.To help readers practice the theory covered, two types of exercises are provided: those that illustrate the general theory, and others designed to expand on the text material. Detailed solutions to all the exercises are included.The book is excellently suited for use as a textbook for an undergraduate class (of all disciplines) in ordinary differential equations.

Full PDF eBook Download Free

*Introduction to Protomodular and Mal’tsev Categories*

Author: Dominique Bourn

Publisher: Birkhäuser

ISBN: 3319572199

Category: Mathematics

Page: 106

View: 9260

*introduction*

Author: Hala O. Pflugfelder

Publisher: Heldermann

ISBN: N.A

Category: Quasigroups

Page: 147

View: 7737

Author: A. Prestel

Publisher: Springer

ISBN: 3540390936

Category: Mathematics

Page: 128

View: 4408

Author: K. Denecke,M. Erné,S.L. Wismath

Publisher: Springer Science & Business Media

ISBN: 1402018983

Category: Mathematics

Page: 502

View: 5124

Author: Steven Roman

Publisher: Birkhäuser

ISBN: 331941917X

Category: Mathematics

Page: 169

View: 9080

Author: Fanggui Wang,Hwankoo Kim

Publisher: Springer

ISBN: 9811033374

Category: Mathematics

Page: 699

View: 3327

*Over the Real and Complex Numbers*

Author: Nolan R. Wallach

Publisher: Springer

ISBN: 3319659073

Category: Mathematics

Page: 190

View: 5594

Author: Tom Miller

Publisher: Lulu Press, Inc

ISBN: 148340353X

Category: Business & Economics

Page: N.A

View: 7993

Author: Max-Albert Knus

Publisher: Springer Science & Business Media

ISBN: 3642754015

Category: Mathematics

Page: 524

View: 6446

Author: Charles R. Johnson,Carlos M. Saiago

Publisher: Cambridge University Press

ISBN: 110854813X

Category: Mathematics

Page: 291

View: 4551

Author: Marco Fontana,Sophie Frisch,Sarah Glaz,Francesca Tartarone,Paolo Zanardo

Publisher: Springer

ISBN: 3319658743

Category: Mathematics

Page: 375

View: 6318

*Geometry of Solutions to Nonlinear Problems*

Author: Michel Demazure

Publisher: Springer Science & Business Media

ISBN: 3642571344

Category: Mathematics

Page: 304

View: 5784

Author: M. Barr,P. A. Grillet,D. H. van Osdol

Publisher: Springer

ISBN: 3540369996

Category: Mathematics

Page: 246

View: 5409

Author: K.W. Roggenkamp,M.J. Taylor

Publisher: Birkhäuser

ISBN: 303488611X

Category: Mathematics

Page: 210

View: 5731

*Special Topics in Order, Topology, Algebra, and Sheaf Theory*

Author: Maria Cristina Pedicchio,Walter Tholen

Publisher: Cambridge University Press

ISBN: 9780521834148

Category: Mathematics

Page: 417

View: 8456

Author: Gary F. Birkenmeier,Jae Keol Park,S Tariq Rizvi

Publisher: Springer Science & Business Media

ISBN: 0387927166

Category: Mathematics

Page: 432

View: 6290

Author: Steven Roman

Publisher: Birkhäuser

ISBN: 3319221442

Category: Mathematics

Page: 121

View: 4032

Author: Harry H. Panjer

Publisher: American Mathematical Soc.

ISBN: 0821800965

Category: Political Science

Page: 127

View: 4644

Author: Belkacem Said-Houari

Publisher: Springer

ISBN: 3319257358

Category: Mathematics

Page: 212

View: 1258