From Calculus to Cohomology

De Rham Cohomology and Characteristic Classes

Author: Ib H. Madsen,Jxrgen Tornehave

Publisher: Cambridge University Press

ISBN: 9780521589567

Category: Mathematics

Page: 286

View: 5651

An introductory textbook on cohomology and curvature with emphasis on applications.
Posted in Mathematics

Differentialgeometrie, Topologie und Physik

Author: Mikio Nakahara

Publisher: Springer-Verlag

ISBN: 3662453002

Category: Science

Page: 597

View: 6858

Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.
Posted in Science

Vektoranalysis

Author: Klaus Jänich

Publisher: Springer-Verlag

ISBN: 3662107503

Category: Mathematics

Page: 277

View: 6150

Die Vektoranalysis handelt, in klassischer Darstellung, von Vektorfeldern, den Operatoren Gradient, Divergenz und Rotation, von Linien-, Flächen- und Volumenintegralen und von den Integralsätzen von Gauß, Stokes und Green. In moderner Fassung ist es der Cartansche Kalkül mit dem Satz von Stokes. Das vorliegende Buch vertritt grundsätzlich die moderne Herangehensweise, geht aber auch sorgfältig auf die klassische Notation und Auffassung ein. Das Buch richtet sich an Mathematik- und Physikstudenten ab dem zweiten Studienjahr, die mit den Grundbegriffen der Differential- und Integralrechnung in einer und mehreren Variablen sowie der Topologie vertraut sind. Der sehr persönliche Stil des Autors und die aus anderen Büchern bereits bekannten Lernhilfen, wie: viele Figuren, mehr als 50 kommentierte Übungsaufgaben, über 100 Tests mit Antworten, machen auch diesen Text zum Selbststudium hervorragend geeignet.
Posted in Mathematics

Twenty-four Hours of Local Cohomology

Author: Srikanth Iyengar

Publisher: American Mathematical Soc.

ISBN: 0821841262

Category: Mathematics

Page: 282

View: 5025

This book is aimed to provide an introduction to local cohomology which takes cognizance of the breadth of its interactions with other areas of mathematics. It covers topics such as the number of defining equations of algebraic sets, connectedness properties of algebraic sets, connections to sheaf cohomology and to de Rham cohomology, Grobner bases in the commutative setting as well as for $D$-modules, the Frobenius morphism and characteristic $p$ methods, finiteness properties of local cohomology modules, semigroup rings and polyhedral geometry, and hypergeometric systems arising from semigroups. The book begins with basic notions in geometry, sheaf theory, and homological algebra leading to the definition and basic properties of local cohomology. Then it develops the theory in a number of different directions, and draws connections with topology, geometry, combinatorics, and algorithmic aspects of the subject.
Posted in Mathematics

Einführung in Die Differentialtopologie

Author: Theodor Bröcker,Klaus Jänich

Publisher: Springer Verlag

ISBN: N.A

Category: Mathematics

Page: 168

View: 6770

Posted in Mathematics

Differential Geometry

Bundles, Connections, Metrics and Curvature

Author: Clifford Henry Taubes

Publisher: Oxford University Press

ISBN: 0199605882

Category: Mathematics

Page: 298

View: 6733

Bundles, connections, metrics and curvature are the lingua franca of modern differential geometry and theoretical physics. Supplying graduate students in mathematics or theoretical physics with the fundamentals of these objects, this book would suit a one-semester course on the subject of bundles and the associated geometry.
Posted in Mathematics

Topology and Condensed Matter Physics

Author: Somendra Mohan Bhattacharjee,Mahan Mj,Abhijit Bandyopadhyay

Publisher: Springer

ISBN: 9811068410

Category: Science

Page: 507

View: 5638

This book introduces aspects of topology and applications to problems in condensed matter physics. Basic topics in mathematics have been introduced in a form accessible to physicists, and the use of topology in quantum, statistical and solid state physics has been developed with an emphasis on pedagogy. The aim is to bridge the language barrier between physics and mathematics, as well as the different specializations in physics. Pitched at the level of a graduate student of physics, this book does not assume any additional knowledge of mathematics or physics. It is therefore suited for advanced postgraduate students as well. A collection of selected problems will help the reader learn the topics on one's own, and the broad range of topics covered will make the text a valuable resource for practising researchers in the field. The book consists of two parts: one corresponds to developing the necessary mathematics and the other discusses applications to physical problems. The section on mathematics is a quick, but more-or-less complete, review of topology. The focus is on explaining fundamental concepts rather than dwelling on details of proofs while retaining the mathematical flavour. There is an overview chapter at the beginning and a recapitulation chapter on group theory. The physics section starts with an introduction and then goes on to topics in quantum mechanics, statistical mechanics of polymers, knots, and vertex models, solid state physics, exotic excitations such as Dirac quasiparticles, Majorana modes, Abelian and non-Abelian anyons. Quantum spin liquids and quantum information-processing are also covered in some detail.
Posted in Science

Manifolds and Modular Forms

Author: Friedrich Hirzebruch

Publisher: Springer-Verlag

ISBN: 3663140458

Category: Mathematics

Page: 212

View: 7424

Posted in Mathematics

Topology, Geometry and Gauge fields

Interactions

Author: Gregory L. Naber

Publisher: Springer Science & Business Media

ISBN: 9781441978950

Category: Mathematics

Page: 420

View: 5104

A study of topology and geometry, beginning with a comprehensible account of the extraordinary and rather mysterious impact of mathematical physics, and especially gauge theory, on the study of the geometry and topology of manifolds. The focus of the book is the Yang-Mills-Higgs field and some considerable effort is expended to make clear its origin and significance in physics. Much of the mathematics developed here to study these fields is standard, but the treatment always keeps one eye on the physics and sacrifices generality in favor of clarity. The author brings readers up the level of physics and mathematics needed to conclude with a brief discussion of the Seiberg-Witten invariants. A large number of exercises are included to encourage active participation on the part of the reader.
Posted in Mathematics

Algebraische Zahlentheorie

Author: Jürgen Neukirch

Publisher: Springer-Verlag

ISBN: 3540376631

Category: Mathematics

Page: 595

View: 6526

Algebraische Zahlentheorie: eine der traditionsreichsten und aktuellsten Grunddisziplinen der Mathematik. Das vorliegende Buch schildert ausführlich Grundlagen und Höhepunkte. Konkret, modern und in vielen Teilen neu. Neu: Theorie der Ordnungen. Plus: die geometrische Neubegründung der Theorie der algebraischen Zahlkörper durch die "Riemann-Roch-Theorie" vom "Arakelovschen Standpunkt", die bis hin zum "Grothendieck-Riemann-Roch-Theorem" führt.
Posted in Mathematics

Dirac-Operatoren in der Riemannschen Geometrie

Mit einem Ausblick auf die Seiberg-Witten-Theorie

Author: Thomas Friedrich

Publisher: Springer-Verlag

ISBN: 3322803023

Category: Mathematics

Page: 207

View: 2451

Dieses Buch entstand nach einer einsemestrigen Vorlesung an der Humboldt-Universität Berlin im Studienjahr 1996/ 97 und ist eine Einführung in die Theorie der Spinoren und Dirac-Operatoren über Riemannschen Mannigfaltigkeiten. Vom Leser werden nur die grundlegenden Kenntnisse der Algebra und Geometrie im Umfang von zwei bis drei Jahren eines Mathematik- oder Physikstudiums erwartet. Ein Anhang gibt eine Einführung in das aktuelle Gebiet der Seiberg-Witten-Theorie.
Posted in Mathematics

Analysis I

Author: Christiane Tretter

Publisher: Springer-Verlag

ISBN: 3034803494

Category: Mathematics

Page: 157

View: 7835

Das Lehrbuch ist der erste von zwei einführenden Bänden in die Analysis. Es zeichnet sich dadurch aus, dass alle klassischen Themen der Analysis des ersten Semesters kompakt zusammengefasst sind und dennoch auf typische Anfängerprobleme eingegangen wird. Neben einer Einführung in die formale Sprache und die wichtigsten Beweistechniken der Mathematik bietet der Band eingängige Erläuterungen zu abstrakten Begriffen. Alle prüfungsrelevanten Inhalte sind abgedeckt und können anhand von Beispielen, Gegenbeispielen und Aufgaben nachvollzogen werden.
Posted in Mathematics

Differentialgeometrie von Kurven und Flächen

Author: Manfredo P. do Carmo

Publisher: Springer-Verlag

ISBN: 3322850722

Category: Technology & Engineering

Page: 263

View: 1333

Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang
Posted in Technology & Engineering

Bernhard Riemann 1826–1866

Wendepunkte in der Auffassung der Mathematik

Author: Detlef Laugwitz

Publisher: Springer-Verlag

ISBN: 3034889836

Category: Mathematics

Page: 348

View: 3952

Das Riemannsche Integral lernen schon die Schüler kennen, die Theorien der reellen und der komplexen Funktionen bauen auf wichtigen Begriffsbildungen und Sätzen Riemanns auf, die Riemannsche Geometrie ist für Einsteins Gravitationstheorie und ihre Erweiterungen unentbehrlich, und in der Zahlentheorie ist die berühmte Riemannsche Vermutung noch immer offen. Riemann und sein um fünf Jahre jüngerer Freund Richard Dedekind sahen sich als Schüler von Gauss und Dirichlet. Um die Mitte des 19. Jahrhunderts leiteten sie den Übergang zur "modernen Mathematik" ein, der eine in Analysis und Geometrie, der andere in der Algebra mit der Hinwendung zu Mengen und Strukturen. Dieses Buch ist der erste Versuch, Riemanns wissenschaftliches Werk unter einem einheitlichen Gesichtspunkt zusammenzufassend darzustellen. Riemann gilt als einer der Philosophen unter den Mathematikern. Er stellte das Denken in Begriffen neben die zuvor vorherrschende algorithmische Auffassung von der Mathematik, welche die Gegenstände der Untersuchung, in Formeln und Figuren, in Termumformungen und regelhaften Konstruktionen als die allein legitimen Methoden sah. David Hilbert hat als Riemanns Grundsatz herausgestellt, die Beweise nicht durch Rechnung, sondern lediglich durch Gedanken zu zwingen. Hermann Weyl sah als das Prinzip Riemanns in Mathematik und Physik, "die Welt als das erkenntnistheoretische Motiv..., die Welt aus ihrem Verhalten im un- endlich kleinen zu verstehen."
Posted in Mathematics

Raum, Zeit, Materie

Author: Hermann Weyl

Publisher: Рипол Классик

ISBN: 5880098028

Category: History

Page: N.A

View: 1395

Posted in History

Einführung in die Geometrie und Topologie

Author: Werner Ballmann

Publisher: Springer-Verlag

ISBN: 3034809018

Category: Mathematics

Page: 162

View: 8269

Das Buch bietet eine Einführung in die Topologie, Differentialtopologie und Differentialgeometrie. Es basiert auf Manuskripten, die in verschiedenen Vorlesungszyklen erprobt wurden. Im ersten Kapitel werden grundlegende Begriffe und Resultate aus der mengentheoretischen Topologie bereitgestellt. Eine Ausnahme hiervon bildet der Jordansche Kurvensatz, der für Polygonzüge bewiesen wird und eine erste Idee davon vermitteln soll, welcher Art tiefere topologische Probleme sind. Im zweiten Kapitel werden Mannigfaltigkeiten und Liesche Gruppen eingeführt und an einer Reihe von Beispielen veranschaulicht. Diskutiert werden auch Tangential- und Vektorraumbündel, Differentiale, Vektorfelder und Liesche Klammern von Vektorfeldern. Weiter vertieft wird diese Diskussion im dritten Kapitel, in dem die de Rhamsche Kohomologie und das orientierte Integral eingeführt und der Brouwersche Fixpunktsatz, der Jordan-Brouwersche Zerlegungssatz und die Integralformel von Stokes bewiesen werden. Das abschließende vierte Kapitel ist den Grundlagen der Differentialgeometrie gewidmet. Entlang der Entwicklungslinien, die die Geometrie der Kurven und Untermannigfaltigkeiten in Euklidischen Räumen durchlaufen hat, werden Zusammenhänge und Krümmung, die zentralen Konzepte der Differentialgeometrie, diskutiert. Den Höhepunkt bilden die Gaussgleichungen, die Version des theorema egregium von Gauss für Untermannigfaltigkeiten beliebiger Dimension und Kodimension. Das Buch richtet sich in erster Linie an Mathematik- und Physikstudenten im zweiten und dritten Studienjahr und ist als Vorlage für ein- oder zweisemestrige Vorlesungen geeignet.
Posted in Mathematics

Kategorien und Funktoren

Author: Bodo Pareigis

Publisher: N.A

ISBN: N.A

Category: Categories (Mathematics)

Page: 192

View: 8504

Posted in Categories (Mathematics)

Numerische Mathematik 2

Author: Alfio Quarteroni,Riccardo Sacco,Fausto Saleri

Publisher: Springer-Verlag

ISBN: 3642561918

Category: Mathematics

Page: 330

View: 5541

Numerische Mathematik ist ein zentrales Gebiet der Mathematik, das für vielfältige Anwendungen die Grundlage bildet und das alle Studierenden der Mathematik, Ingenieurwissenschaften, Informatik und Physik kennenlernen. Das vorliegende Lehrbuch ist eine didaktisch exzellente, besonders sorgfältig ausgearbeitete Einführung für Anfänger. Eines der Ziele dieses Buches ist es, die mathematischen Grundlagen der numerischen Methoden zu liefern, ihre grundlegenden theoretischen Eigenschaften (Stabilität, Genauigkeit, Komplexität)zu analysieren, und ihre Leistungsfähigkeit an Beispielen und Gegenbeispielen mittels MATLAB zu demonstrieren. Die besondere Sorgfalt, die den Anwendungen und betreffenden Softwareentwicklungen gewidmet wurde, macht das vorliegende Werk auch für Studenten mit abgeschlossenem Studium, Wissenschaftler und Anwender des wissenschaftlichen Rechnens in vielen Berufsfeldern zu einem unverzichtbaren Arbeitsmittel. Inhalt von Band 2 siehe ToC.
Posted in Mathematics

Einführung in die Kategorientheorie

Mit ausführlichen Erklärungen und zahlreichen Beispielen

Author: Martin Brandenburg

Publisher: Springer-Verlag

ISBN: 3662535211

Category: Mathematics

Page: 343

View: 4589

Die Kategorientheorie deckt die innere Architektur der Mathematik auf. Dabei werden die strukturellen Gemeinsamkeiten zwischen mathematischen Disziplinen und ihren spezifischen Konstruktionen herausgearbeitet. Dieses Buch gibt eine systematische Einführung in die Grundbegriffe der Kategorientheorie. Zahlreiche ausführliche Erklärungstexte sowie die große Menge an Beispielen helfen beim Einstieg in diese verhältnismäßig abstrakte Theorie. Es werden viele konkrete Anwendungen besprochen, welche die Nützlichkeit der Kategorientheorie im mathematischen Alltag belegen. Jedes Kapitel wird mit einem motivierenden Text eingeleitet und mit einer großen Aufgabensammlung abgeschlossen. An Vorwissen muss der Leser lediglich ein paar Grundbegriffe des Mathematik-Studiums mitbringen. Die vorliegende zweite vollständig durchgesehene Auflage ist um ausführliche Lösungen zu ausgewählten Aufgaben ergänzt.
Posted in Mathematics

Differential Geometry

Connections, Curvature, and Characteristic Classes

Author: Loring W. Tu

Publisher: Springer

ISBN: 3319550845

Category: Mathematics

Page: 347

View: 3548

This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.
Posted in Mathematics