Elements of Algebra

Geometry, Numbers, Equations

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 1475739761

Category: Mathematics

Page: 184

View: 5944

Algebra is abstract mathematics - let us make no bones about it - yet it is also applied mathematics in its best and purest form. It is not abstraction for its own sake, but abstraction for the sake of efficiency, power and insight. Algebra emerged from the struggle to solve concrete, physical problems in geometry, and succeeded after 2000 years of failure by other forms of mathematics. It did this by exposing the mathematical structure of geometry, and by providing the tools to analyse it. This is typical of the way algebra is applied; it is the best and purest form of application because it reveals the simplest and most universal mathematical structures. The present book aims to foster a proper appreciation of algebra by showing abstraction at work on concrete problems, the classical problems of construction by straightedge and compass. These problems originated in the time of Euclid, when geometry and number theory were paramount, and were not solved until th the 19 century, with the advent of abstract algebra. As we now know, alge bra brings about a unification of geometry, number theory and indeed most branches of mathematics. This is not really surprising when one has a historical understanding of the subject, which I also hope to impart.
Posted in Mathematics

Elements of Number Theory

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 0387217355

Category: Mathematics

Page: 256

View: 5902

Solutions of equations in integers is the central problem of number theory and is the focus of this book. The amount of material is suitable for a one-semester course. The author has tried to avoid the ad hoc proofs in favor of unifying ideas that work in many situations. There are exercises at the end of almost every section, so that each new idea or proof receives immediate reinforcement.
Posted in Mathematics

Numbers and Geometry

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 9780387982892

Category: Mathematics

Page: 343

View: 1535

A beautiful and relatively elementary account of a part of mathematics where three main fields - algebra, analysis and geometry - meet. The book provides a broad view of these subjects at the level of calculus, without being a calculus book. Its roots are in arithmetic and geometry, the two opposite poles of mathematics, and the source of historic conceptual conflict. The resolution of this conflict, and its role in the development of mathematics, is one of the main stories in the book. Stillwell has chosen an array of exciting and worthwhile topics and elegantly combines mathematical history with mathematics. He covers the main ideas of Euclid, but with 2000 years of extra insights attached. Presupposing only high school algebra, it can be read by any well prepared student entering university. Moreover, this book will be popular with graduate students and researchers in mathematics due to its attractive and unusual treatment of fundamental topics. A set of well-written exercises at the end of each section allows new ideas to be instantly tested and reinforced.
Posted in Mathematics

Mathematics and Its History

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 144196052X

Category: Mathematics

Page: 662

View: 1100

From a review of the second edition: "This book covers many interesting topics not usually covered in a present day undergraduate course, as well as certain basic topics such as the development of the calculus and the solution of polynomial equations. The fact that the topics are introduced in their historical contexts will enable students to better appreciate and understand the mathematical ideas involved...If one constructs a list of topics central to a history course, then they would closely resemble those chosen here." (David Parrott, Australian Mathematical Society) This book offers a collection of historical essays detailing a large variety of mathematical disciplines and issues; it’s accessible to a broad audience. This third edition includes new chapters on simple groups and new sections on alternating groups and the Poincare conjecture. Many more exercises have been added as well as commentary that helps place the exercises in context.
Posted in Mathematics

Euclid—The Creation of Mathematics

Author: Benno Artmann

Publisher: Springer Science & Business Media

ISBN: 1461214122

Category: Mathematics

Page: 349

View: 8099

Euclid presents the essential of mathematics in a manner which has set a high standard for more than 2000 years. This book, an explanation of the nature of mathematics from its most important early source, is for all lovers of mathematics with a solid background in high school geometry, whether they be students or university professors.
Posted in Mathematics

Algebraic Equations

An Introduction to the Theories of Lagrange and Galois

Author: Edgar Dehn

Publisher: Courier Corporation

ISBN: 0486155102

Category: Mathematics

Page: 224

View: 7623

Focusing on basics of algebraic theory, this text presents detailed explanations of integral functions, permutations, and groups as well as Lagrange and Galois theory. Many numerical examples with complete solutions. 1930 edition.
Posted in Mathematics

The Four Pillars of Geometry

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 0387255303

Category: Mathematics

Page: 228

View: 885

This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
Posted in Mathematics

Linear Algebra

Author: Klaus Jänich

Publisher: Springer Science & Business Media

ISBN: 9780387941288

Category: Mathematics

Page: 204

View: 7514

The original version of this book, handed out to my students in weekly in stallments, had a certain rugged charm. Now that it is dressed up as a Springer UTM volume, I feel very much like Alfred Dolittle at Eliza's wedding. I hope the reader will still sense the presence of a young lecturer, enthusiastically urging his audience to enjoy linear algebra. The book is structured in various ways. For example, you will find a test in each chapter; you may consider the material up to the test as basic and the material following the test as supplemental. In principle, it should be possible to go from the test directly to the basic material of the next chapter. Since I had a mixed audience of mathematics and physics students, I tried to give each group some special attention, which in the book results in certain sections being marked· "for physicists" or "for mathematicians. " Another structural feature of the text is its division into laconic main text, put in boxes, and more talkative unboxed side text. If you follow just the main text, jumping from box to box, you will find that it makes coherent reading, a real "book within the book," presenting all that I want to teach.
Posted in Mathematics

Geometry: Euclid and Beyond

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

ISBN: 0387226761

Category: Mathematics

Page: 528

View: 4646

This book offers a unique opportunity to understand the essence of one of the great thinkers of western civilization. A guided reading of Euclid's Elements leads to a critical discussion and rigorous modern treatment of Euclid's geometry and its more recent descendants, with complete proofs. Topics include the introduction of coordinates, the theory of area, history of the parallel postulate, the various non-Euclidean geometries, and the regular and semi-regular polyhedra.
Posted in Mathematics

Geometry of Surfaces

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 1461209293

Category: Mathematics

Page: 236

View: 5164

The geometry of surfaces is an ideal starting point for learning geometry, for, among other reasons, the theory of surfaces of constant curvature has maximal connectivity with the rest of mathematics. This text provides the student with the knowledge of a geometry of greater scope than the classical geometry taught today, which is no longer an adequate basis for mathematics or physics, both of which are becoming increasingly geometric. It includes exercises and informal discussions.
Posted in Mathematics

Naive Lie Theory

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 9780387782157

Category: Mathematics

Page: 217

View: 2104

In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).
Posted in Mathematics

Glimpses of Algebra and Geometry

Author: Gabor Toth

Publisher: Springer Science & Business Media

ISBN: 0387224556

Category: Mathematics

Page: 450

View: 4644

Previous edition sold 2000 copies in 3 years; Explores the subtle connections between Number Theory, Classical Geometry and Modern Algebra; Over 180 illustrations, as well as text and Maple files, are available via the web facilitate understanding: http://mathsgi01.rutgers.edu/cgi-bin/wrap/gtoth/; Contains an insert with 4-color illustrations; Includes numerous examples and worked-out problems
Posted in Mathematics

Advanced Calculus

A Geometric View

Author: James J. Callahan

Publisher: Springer Science & Business Media

ISBN: 9781441973320

Category: Mathematics

Page: 526

View: 3696

With a fresh geometric approach that incorporates more than 250 illustrations, this textbook sets itself apart from all others in advanced calculus. Besides the classical capstones--the change of variables formula, implicit and inverse function theorems, the integral theorems of Gauss and Stokes--the text treats other important topics in differential analysis, such as Morse's lemma and the Poincaré lemma. The ideas behind most topics can be understood with just two or three variables. The book incorporates modern computational tools to give visualization real power. Using 2D and 3D graphics, the book offers new insights into fundamental elements of the calculus of differentiable maps. The geometric theme continues with an analysis of the physical meaning of the divergence and the curl at a level of detail not found in other advanced calculus books. This is a textbook for undergraduates and graduate students in mathematics, the physical sciences, and economics. Prerequisites are an introduction to linear algebra and multivariable calculus. There is enough material for a year-long course on advanced calculus and for a variety of semester courses--including topics in geometry. The measured pace of the book, with its extensive examples and illustrations, make it especially suitable for independent study.
Posted in Mathematics

Divine proportions

rational trigonometry to universal geometry

Author: N.J. Wildberger,Norman John Wildberger

Publisher: N.A

ISBN: 9780975749203

Category: Mathematics

Page: 300

View: 9500

"... introduces a remarkable new approach to trigonometry and Euclidean geometry, with dramatic implications for mathematics teaching, industrial applications and the direction of mathematical research in geometry" -- p. vii.
Posted in Mathematics

The Fundamental Theorem of Algebra

Author: Benjamin Fine,Gerhard Rosenberger

Publisher: Springer Science & Business Media

ISBN: 1461219280

Category: Mathematics

Page: 210

View: 8934

The fundamental theorem of algebra states that any complex polynomial must have a complex root. This book examines three pairs of proofs of the theorem from three different areas of mathematics: abstract algebra, complex analysis and topology. The first proof in each pair is fairly straightforward and depends only on what could be considered elementary mathematics. However, each of these first proofs leads to more general results from which the fundamental theorem can be deduced as a direct consequence. These general results constitute the second proof in each pair. To arrive at each of the proofs, enough of the general theory of each relevant area is developed to understand the proof. In addition to the proofs and techniques themselves, many applications such as the insolvability of the quintic and the transcendence of e and pi are presented. Finally, a series of appendices give six additional proofs including a version of Gauss'original first proof. The book is intended for junior/senior level undergraduate mathematics students or first year graduate students, and would make an ideal "capstone" course in mathematics.
Posted in Mathematics

The Real Numbers

An Introduction to Set Theory and Analysis

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 331901577X

Category: Mathematics

Page: 244

View: 7818

While most texts on real analysis are content to assume the real numbers, or to treat them only briefly, this text makes a serious study of the real number system and the issues it brings to light. Analysis needs the real numbers to model the line, and to support the concepts of continuity and measure. But these seemingly simple requirements lead to deep issues of set theory—uncountability, the axiom of choice, and large cardinals. In fact, virtually all the concepts of infinite set theory are needed for a proper understanding of the real numbers, and hence of analysis itself. By focusing on the set-theoretic aspects of analysis, this text makes the best of two worlds: it combines a down-to-earth introduction to set theory with an exposition of the essence of analysis—the study of infinite processes on the real numbers. It is intended for senior undergraduates, but it will also be attractive to graduate students and professional mathematicians who, until now, have been content to "assume" the real numbers. Its prerequisites are calculus and basic mathematics. Mathematical history is woven into the text, explaining how the concepts of real number and infinity developed to meet the needs of analysis from ancient times to the late twentieth century. This rich presentation of history, along with a background of proofs, examples, exercises, and explanatory remarks, will help motivate the reader. The material covered includes classic topics from both set theory and real analysis courses, such as countable and uncountable sets, countable ordinals, the continuum problem, the Cantor–Schröder–Bernstein theorem, continuous functions, uniform convergence, Zorn's lemma, Borel sets, Baire functions, Lebesgue measure, and Riemann integrable functions.
Posted in Mathematics

Undergraduate Algebraic Geometry

Author: Miles Reid

Publisher: Cambridge University Press

ISBN: 9780521356626

Category: Mathematics

Page: 129

View: 1587

This short and readable introduction to algebraic geometry will be ideal for all undergraduate mathematicians coming to the subject for the first time.
Posted in Mathematics

Elements of Mathematics

From Euclid to Gödel

Author: John Stillwell

Publisher: Princeton University Press

ISBN: 1400880564

Category: Mathematics

Page: 440

View: 5885

Elements of Mathematics takes readers on a fascinating tour that begins in elementary mathematics—but, as John Stillwell shows, this subject is not as elementary or straightforward as one might think. Not all topics that are part of today's elementary mathematics were always considered as such, and great mathematical advances and discoveries had to occur in order for certain subjects to become "elementary." Stillwell examines elementary mathematics from a distinctive twenty-first-century viewpoint and describes not only the beauty and scope of the discipline, but also its limits. From Gaussian integers to propositional logic, Stillwell delves into arithmetic, computation, algebra, geometry, calculus, combinatorics, probability, and logic. He discusses how each area ties into more advanced topics to build mathematics as a whole. Through a rich collection of basic principles, vivid examples, and interesting problems, Stillwell demonstrates that elementary mathematics becomes advanced with the intervention of infinity. Infinity has been observed throughout mathematical history, but the recent development of "reverse mathematics" confirms that infinity is essential for proving well-known theorems, and helps to determine the nature, contours, and borders of elementary mathematics. Elements of Mathematics gives readers, from high school students to professional mathematicians, the highlights of elementary mathematics and glimpses of the parts of math beyond its boundaries.
Posted in Mathematics

Introduction to Calculus and Classical Analysis

Author: Omar Hijab

Publisher: Springer

ISBN: 3319284002

Category: Mathematics

Page: 427

View: 2196

This text is intended for an honors calculus course or for an introduction to analysis. Involving rigorous analysis, computational dexterity, and a breadth of applications, it is ideal for undergraduate majors. This third edition includes corrections as well as some additional material. Some features of the text include: The text is completely self-contained and starts with the real number axioms; The integral is defined as the area under the graph, while the area is defined for every subset of the plane; There is a heavy emphasis on computational problems, from the high-school quadratic formula to the formula for the derivative of the zeta function at zero; There are applications from many parts of analysis, e.g., convexity, the Cantor set, continued fractions, the AGM, the theta and zeta functions, transcendental numbers, the Bessel and gamma functions, and many more; Traditionally transcendentally presented material, such as infinite products, the Bernoulli series, and the zeta functional equation, is developed over the reals; and There are 385 problems with all the solutions at the back of the text.
Posted in Mathematics

Outline Course of Pure Mathematics

Author: A. F. Horadam

Publisher: Elsevier

ISBN: 1483147908

Category: Mathematics

Page: 594

View: 4257

Outline Course of Pure Mathematics presents a unified treatment of the algebra, geometry, and calculus that are considered fundamental for the foundation of undergraduate mathematics. This book discusses several topics, including elementary treatments of the real number system, simple harmonic motion, Hooke's law, parabolic motion under gravity, sequences and series, polynomials, binomial theorem, and theory of probability. Organized into 23 chapters, this book begins with an overview of the fundamental concepts of differential and integral calculus, which are complementary processes for solving problems of the physical world. This text then explains the concept of the inverse of a function that is a natural complement of the function concept and introduces a convenient notation. Other chapters illustrate the concepts of continuity and discontinuity at the origin. This book discusses as well the significance of logarithm and exponential functions in scientific and technological contexts. This book is a valuable resource for undergraduates and advanced secondary school students.
Posted in Mathematics