Author: Barrett O'Neill

Publisher: Elsevier

ISBN: 9780080505428

Category: Mathematics

Page: 520

View: 873

Skip to content
#
Search Results for: elementary-differential-geometry-revised-2nd-edition

## Elementary Differential Geometry, Revised 2nd Edition

Written primarily for students who have completed the standard first courses in calculus and linear algebra, Elementary Differential Geometry, Revised 2nd Edition, provides an introduction to the geometry of curves and surfaces. The Second Edition maintained the accessibility of the first, while providing an introduction to the use of computers and expanding discussion on certain topics. Further emphasis was placed on topological properties, properties of geodesics, singularities of vector fields, and the theorems of Bonnet and Hadamard. This revision of the Second Edition provides a thorough update of commands for the symbolic computation programs Mathematica or Maple, as well as additional computer exercises. As with the Second Edition, this material supplements the content but no computer skill is necessary to take full advantage of this comprehensive text. Over 36,000 copies sold worldwide Accessible, practical yet rigorous approach to a complex topic--also suitable for self-study Extensive update of appendices on Mathematica and Maple software packages Thorough streamlining of second edition's numbering system Fuller information on solutions to odd-numbered problems Additional exercises and hints guide students in using the latest computer modeling tools
## Elementary Differential Geometry

Elementary Differential Geometry focuses on the elementary account of the geometry of curves and surfaces. The book first offers information on calculus on Euclidean space and frame fields. Topics include structural equations, connection forms, frame fields, covariant derivatives, Frenet formulas, curves, mappings, tangent vectors, and differential forms. The publication then examines Euclidean geometry and calculus on a surface. Discussions focus on topological properties of surfaces, differential forms on a surface, integration of forms, differentiable functions and tangent vectors, congruence of curves, derivative map of an isometry, and Euclidean geometry. The manuscript takes a look at shape operators, geometry of surfaces in E, and Riemannian geometry. Concerns include geometric surfaces, covariant derivative, curvature and conjugate points, Gauss-Bonnet theorem, fundamental equations, global theorems, isometries and local isometries, orthogonal coordinates, and integration and orientation. The text is a valuable reference for students interested in elementary differential geometry.
## Elementary Differential Geometry

Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces suitable for a first course on the subject. Prerequisites are kept to an absolute minimum – nothing beyond first courses in linear algebra and multivariable calculus – and the most direct and straightforward approach is used throughout. New features of this revised and expanded second edition include: a chapter on non-Euclidean geometry, a subject that is of great importance in the history of mathematics and crucial in many modern developments. The main results can be reached easily and quickly by making use of the results and techniques developed earlier in the book. Coverage of topics such as: parallel transport and its applications; map colouring; holonomy and Gaussian curvature. Around 200 additional exercises, and a full solutions manual for instructors, available via www.springer.com ul>
## Elementary Differential Geometry, Revised 2nd Edition

Facts101 is your complete guide to Elementary Differential Geometry, Revised 2nd Edition. In this book, you will learn topics such as Euclidean Geometry, Calculus on a Surface, Shape Operators, and Geometry of Surfaces in R3 plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.
## Differential Geometry

This carefully written book is an introduction to the beautiful ideas and results of differential geometry. The first half covers the geometry of curves and surfaces, which provide much of the motivation and intuition for the general theory. The second part studies the geometry of general manifolds, with particular emphasis on connections and curvature. The text is illustrated with many figures and examples. The prerequisites are undergraduate analysis and linear algebra. This new edition provides many advancements, including more figures and exercises, and--as a new feature--a good number of solutions to selected exercises.
## Geometry from a Differentiable Viewpoint

A thoroughly revised second edition of a textbook for a first course in differential/modern geometry that introduces methods within a historical context.
## Differential Geometry and Its Applications

Differential geometry has a long, wonderful history it has found relevance in areas ranging from machinery design of the classification of four-manifolds to the creation of theories of nature's fundamental forces to the study of DNA. This book studies the differential geometry of surfaces with the goal of helping students make the transition from the compartmentalized courses in a standard university curriculum to a type of mathematics that is a unified whole, it mixes geometry, calculus, linear algebra, differential equations, complex variables, the calculus of variations, and notions from the sciences. Differential geometry is not just for mathematics majors, it is also for students in engineering and the sciences. Into the mix of these ideas comes the opportunity to visualize concepts through the use of computer algebra systems such as Maple. The book emphasizes that this visualization goes hand-in-hand with the understanding of the mathematics behind the computer construction. Students will not only “see” geodesics on surfaces, but they will also see the effect that an abstract result such as the Clairaut relation can have on geodesics. Furthermore, the book shows how the equations of motion of particles constrained to surfaces are actually types of geodesics. Students will also see how particles move under constraints. The book is rich in results and exercises that form a continuous spectrum, from those that depend on calculation to proofs that are quite abstract.
## Elementary Topics in Differential Geometry

In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.
## Differential Geometry of Curves and Surfaces

One of the most widely used texts in its field, this volume introduces the differential geometry of curves and surfaces in both local and global aspects. The presentation departs from the traditional approach with its more extensive use of elementary linear algebra and its emphasis on basic geometrical facts rather than machinery or random details. Many examples and exercises enhance the clear, well-written exposition, along with hints and answers to some of the problems. The treatment begins with a chapter on curves, followed by explorations of regular surfaces, the geometry of the Gauss map, the intrinsic geometry of surfaces, and global differential geometry. Suitable for advanced undergraduates and graduate students of mathematics, this text's prerequisites include an undergraduate course in linear algebra and some familiarity with the calculus of several variables. For this second edition, the author has corrected, revised, and updated the entire volume.
## Curves and Surfaces

This introductory textbook puts forth a clear and focused point of view on the differential geometry of curves and surfaces. Following the modern point of view on differential geometry, the book emphasizes the global aspects of the subject. The excellent collection of examples and exercises (with hints) will help students in learning the material. Advanced undergraduates and graduate students will find this a nice entry point to differential geometry. In order to study the global properties of curves and surfaces, it is necessary to have more sophisticated tools than are usually found in textbooks on the topic. In particular, students must have a firm grasp on certain topological theories. Indeed, this monograph treats the Gauss-Bonnet theorem and discusses the Euler characteristic. The authors also cover Alexandrov's theorem on embedded compact surfaces in $\mathbb{R}^3$ with constant mean curvature. The last chapter addresses the global geometry of curves, including periodic space curves and the four-vertices theorem for plane curves that are not necessarily convex. Besides being an introduction to the lively subject of curves and surfaces, this book can also be used as an entry to a wider study of differential geometry. It is suitable as the text for a first-year graduate course or an advanced undergraduate course.
## Elementary Differential Geometry

Written primarily for readers who have completed the standard first courses in calculus and linear algebra, Elementary Differential Geometry, Second Edition provides an introduction to the geometry of curves and surfaces. Although the popular First Edition has been extensively modified, this Second Edition maintains the elementary character of that volume, while providing an introduction to the use of computers and expanding discussion on certain topics. Further emphasis has been placed on topological properties, properties of geodesics, singularities of vector fields, and the theorems of Bonnet and Hadamard. For readers with access to the symbolic computation programs, Mathematica or Maple, the book includes approximately 30 optional computer exercises. These are not intended as an essential part of the book, but rather an extension. No computer skill is necessary to take full advantage of this comprehensive text. * Gives detailed examples for all essential ideas * Provides more than 300 exercises * Features more than 200 illustrations * Includes an introduction to using computers, and supplies answers to computer exercises given for both Mathematica and Maple systems
## Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers

This book comprehensively presents topics, such as Dirac notation, tensor analysis, elementary differential geometry of moving surfaces, and k-differential forms. Additionally, two new chapters of Cartan differential forms and Dirac and tensor notations in quantum mechanics are added to this second edition. The reader is provided with hands-on calculations and worked-out examples at which he will learn how to handle the bra-ket notation, tensors, differential geometry, and differential forms; and to apply them to the physical and engineering world. Many methods and applications are given in CFD, continuum mechanics, electrodynamics in special relativity, cosmology in the Minkowski four-dimensional spacetime, and relativistic and non-relativistic quantum mechanics. Tensors, differential geometry, differential forms, and Dirac notation are very useful advanced mathematical tools in many fields of modern physics and computational engineering. They are involved in special and general relativity physics, quantum mechanics, cosmology, electrodynamics, computational fluid dynamics (CFD), and continuum mechanics. The target audience of this all-in-one book primarily comprises graduate students in mathematics, physics, engineering, research scientists, and engineers.
## Differential Geometry: Manifolds, Curves, and Surfaces

This book consists of two parts, different in form but similar in spirit. The first, which comprises chapters 0 through 9, is a revised and somewhat enlarged version of the 1972 book Geometrie Differentielle. The second part, chapters 10 and 11, is an attempt to remedy the notorious absence in the original book of any treatment of surfaces in three-space, an omission all the more unforgivable in that surfaces are some of the most common geometrical objects, not only in mathematics but in many branches of physics. Geometrie Differentielle was based on a course I taught in Paris in 1969- 70 and again in 1970-71. In designing this course I was decisively influ enced by a conversation with Serge Lang, and I let myself be guided by three general ideas. First, to avoid making the statement and proof of Stokes' formula the climax of the course and running out of time before any of its applications could be discussed. Second, to illustrate each new notion with non-trivial examples, as soon as possible after its introduc tion. And finally, to familiarize geometry-oriented students with analysis and analysis-oriented students with geometry, at least in what concerns manifolds.
## Differential Geometry and Lie Groups for Physicists

Differential geometry plays an increasingly important role in modern theoretical physics and applied mathematics. This textbook gives an introduction to geometrical topics useful in theoretical physics and applied mathematics, covering: manifolds, tensor fields, differential forms, connections, symplectic geometry, actions of Lie groups, bundles, spinors, and so on. Written in an informal style, the author places a strong emphasis on developing the understanding of the general theory through more than 1000 simple exercises, with complete solutions or detailed hints. The book will prepare readers for studying modern treatments of Lagrangian and Hamiltonian mechanics, electromagnetism, gauge fields, relativity and gravitation. Differential Geometry and Lie Groups for Physicists is well suited for courses in physics, mathematics and engineering for advanced undergraduate or graduate students, and can also be used for active self-study. The required mathematical background knowledge does not go beyond the level of standard introductory undergraduate mathematics courses.
## Lectures on Classical Differential Geometry

Elementary, yet authoritative and scholarly, this book offers an excellent brief introduction to the classical theory of differential geometry. It is aimed at advanced undergraduate and graduate students who will find it not only highly readable but replete with illustrations carefully selected to help stimulate the student's visual understanding of geometry. The text features an abundance of problems, most of which are simple enough for class use, and often convey an interesting geometrical fact. A selection of more difficult problems has been included to challenge the ambitious student. Written by a noted mathematician and historian of mathematics, this volume presents the fundamental conceptions of the theory of curves and surfaces and applies them to a number of examples. Dr. Struik has enhanced the treatment with copious historical, biographical, and bibliographical references that place the theory in context and encourage the student to consult original sources and discover additional important ideas there. For this second edition, Professor Struik made some corrections and added an appendix with a sketch of the application of Cartan's method of Pfaffians to curve and surface theory. The result was to further increase the merit of this stimulating, thought-provoking text — ideal for classroom use, but also perfectly suited for self-study. In this attractive, inexpensive paperback edition, it belongs in the library of any mathematician or student of mathematics interested in differential geometry.
## Applied Differential Geometry

This is a self-contained introductory textbook on the calculus of differential forms and modern differential geometry. The intended audience is physicists, so the author emphasises applications and geometrical reasoning in order to give results and concepts a precise but intuitive meaning without getting bogged down in analysis. The large number of diagrams helps elucidate the fundamental ideas. Mathematical topics covered include differentiable manifolds, differential forms and twisted forms, the Hodge star operator, exterior differential systems and symplectic geometry. All of the mathematics is motivated and illustrated by useful physical examples.
## Differential Geometry of Manifolds

From the coauthor of Differential Geometry of Curves and Surfaces, this companion book presents the extension of differential geometry from curves and surfaces to manifolds in general. It provides a broad introduction to the field of differentiable and Riemannian manifolds, tying together the classical and modern formulations. The three appendices provide background information on point set topology, calculus of variations, and multilinear algebra—topics that may not have been covered in the prerequisite courses of multivariable calculus and linear algebra. Differential Geometry of Manifolds takes a practical approach, containing extensive exercises and focusing on applications of differential geometry in physics, including the Hamiltonian formulation of dynamics (with a view toward symplectic manifolds), the tensorial formulation of electromagnetism, some string theory, and some fundamental concepts in general relativity.
## Elements of Differential Geometry

This text is intended for an advanced undergraduate (having taken linear algebra and multivariable calculus). It provides the necessary background for a more abstract course in differential geometry. The inclusion of diagrams is done without sacrificing the rigor of the material. For all readers interested in differential geometry.
## Riemannian Geometry and Geometric Analysis

This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research. The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the Bishop-Gromov volume growth theorem which elucidates the geometric role of Ricci curvature. From the reviews:“This book provides a very readable introduction to Riemannian geometry and geometric analysis... With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome.” Mathematical Reviews “For readers familiar with the basics of differential geometry and some acquaintance with modern analysis, the book is reasonably self-contained. The book succeeds very well in laying out the foundations of modern Riemannian geometry and geometric analysis. It introduces a number of key techniques and provides a representative overview of the field.” Monatshefte für Mathematik
## Global Affine Differential Geometry of Hypersurfaces

This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry - as differential geometry in general - has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces.

Full PDF eBook Download Free

Author: Barrett O'Neill

Publisher: Elsevier

ISBN: 9780080505428

Category: Mathematics

Page: 520

View: 873

Author: Barrett O'Neill

Publisher: Academic Press

ISBN: 148326811X

Category: Mathematics

Page: 422

View: 7983

Author: A.N. Pressley

Publisher: Springer Science & Business Media

ISBN: 1848828918

Category: Mathematics

Page: 474

View: 3208

*Business, Mathematics*

Author: CTI Reviews

Publisher: Cram101 Textbook Reviews

ISBN: 1478417714

Category: Education

Page: 44

View: 3599

Author: Wolfgang Kühnel

Publisher: American Mathematical Soc.

ISBN: 1470423200

Category: Curves

Page: 403

View: 3209

Author: John McCleary

Publisher: Cambridge University Press

ISBN: 0521116074

Category: Mathematics

Page: 357

View: 9172

Author: John Oprea

Publisher: MAA

ISBN: 9780883857489

Category: Mathematics

Page: 469

View: 9957

Author: J. A. Thorpe

Publisher: Springer Science & Business Media

ISBN: 1461261538

Category: Mathematics

Page: 256

View: 6661

*Revised and Updated Second Edition*

Author: Manfredo P. do Carmo

Publisher: Courier Dover Publications

ISBN: 0486806995

Category: Mathematics

Page: 512

View: 2980

Author: Sebastián Montiel,Antonio Ros,Donald G. Babbitt

Publisher: American Mathematical Soc.

ISBN: 0821847635

Category: Mathematics

Page: 376

View: 5234

Author: Barrett O'Neill

Publisher: Taylor & Francis US

ISBN: 9780125267458

Category: Mathematics

Page: 482

View: 8941

Author: Hung Nguyen-Schäfer,Jan-Philip Schmidt

Publisher: Springer

ISBN: 3662484978

Category: Technology & Engineering

Page: 376

View: 8707

*Manifolds, Curves, and Surfaces*

Author: Marcel Berger,Bernard Gostiaux

Publisher: Springer Science & Business Media

ISBN: 146121033X

Category: Mathematics

Page: 476

View: 7921

Author: Marián Fecko

Publisher: Cambridge University Press

ISBN: 1139458035

Category: Science

Page: N.A

View: 4293

Author: Dirk Jan Struik

Publisher: Courier Corporation

ISBN: 9780486656090

Category: Mathematics

Page: 232

View: 4898

Author: William L. Burke

Publisher: Cambridge University Press

ISBN: 9780521269292

Category: Mathematics

Page: 414

View: 2739

Author: Stephen T. Lovett

Publisher: CRC Press

ISBN: 1439865469

Category: Mathematics

Page: 440

View: 1256

Author: Richard S. Millman,George D. Parker

Publisher: Prentice Hall

ISBN: N.A

Category: Mathematics

Page: 265

View: 1296

Author: Jürgen Jost

Publisher: Springer

ISBN: 3319618601

Category: Mathematics

Page: 697

View: 4067

Author: An-Min Li,Udo Simon,Guosong Zhao,Zejun Hu

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110268892

Category: Mathematics

Page: 376

View: 8764