Differential Geometry

Bundles, Connections, Metrics and Curvature

Author: Clifford Henry Taubes

Publisher: OUP Oxford

ISBN: 0191621226

Category: Mathematics

Page: 312

View: 1197

Bundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects. Many of the tools used in differential topology are introduced and the basic results about differentiable manifolds, smooth maps, differential forms, vector fields, Lie groups, and Grassmanians are all presented here. Other material covered includes the basic theorems about geodesics and Jacobi fields, the classification theorem for flat connections, the definition of characteristic classes, and also an introduction to complex and Kähler geometry. Differential Geometry uses many of the classical examples from, and applications of, the subjects it covers, in particular those where closed form expressions are available, to bring abstract ideas to life. Helpfully, proofs are offered for almost all assertions throughout. All of the introductory material is presented in full and this is the only such source with the classical examples presented in detail.
Posted in Mathematics

An Introduction to the Theory of Higher-Dimensional Quasiconformal Mappings

Author: Frederick W. Gehring,Gaven J. Martin,Bruce P. Palka

Publisher: American Mathematical Soc.

ISBN: 0821843605

Category: Conformal mapping

Page: 116

View: 2067

This book offers a modern, up-to-date introduction to quasiconformal mappings from an explicitly geometric perspective, emphasizing both the extensive developments in mapping theory during the past few decades and the remarkable applications of geometric function theory to other fields, including dynamical systems, Kleinian groups, geometric topology, differential geometry, and geometric group theory. It is a careful and detailed introduction to the higher-dimensional theory of quasiconformal mappings from the geometric viewpoint, based primarily on the technique of the conformal modulus of a curve family. Notably, the final chapter describes the application of quasiconformal mapping theory to Mostow's celebrated rigidity theorem in its original context with all the necessary background. This book will be suitable as a textbook for graduate students and researchers interested in beginning to work on mapping theory problems or learning the basics of the geometric approach to quasiconformal mappings. Only a basic background in multidimensional real analysis is assumed.
Posted in Conformal mapping

Differential Geometry

Connections, Curvature, and Characteristic Classes

Author: Loring W. Tu

Publisher: Springer

ISBN: 3319550845

Category: Mathematics

Page: 347

View: 6512

This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.
Posted in Mathematics

Geometry and Physics: Volume II

A Festschrift in honour of Nigel Hitchin

Author: Andrew Dancer,Jørgen Ellegaard Andersen,Oscar García-Prada

Publisher: Oxford University Press

ISBN: 019252237X

Category: Mathematics

Page: 400

View: 4726

Nigel Hitchin is one of the world's foremost figures in the fields of differential and algebraic geometry and their relations with mathematical physics, and he has been Savilian Professor of Geometry at Oxford since 1997. Geometry and Physics: A Festschrift in honour of Nigel Hitchin contain the proceedings of the conferences held in September 2016 in Aarhus, Oxford, and Madrid to mark Nigel Hitchin's 70th birthday, and to honour his far-reaching contributions to geometry and mathematical physics. These texts contain 29 articles by contributors to the conference and other distinguished mathematicians working in related areas, including three Fields Medallists. The articles cover a broad range of topics in differential, algebraic and symplectic geometry, and also in mathematical physics. These volumes will be of interest to researchers and graduate students in geometry and mathematical physics.
Posted in Mathematics

Geometry and Physics: Volume 2

A Festschrift in Honour of Nigel Hitchin

Author: Andrew Dancer,Jørgen Ellegaard Andersen,Oscar García-Prada

Publisher: N.A

ISBN: 0198802021

Category:

Page: 352

View: 1888

These texts contain 29 articles that cover a broad range of topics in differential, algebraic and symplectic geometry, and also in mathematical physics. These volumes will be of interest to researchers and graduate students in geometry and mathematical physics
Posted in

Vektoranalysis

Differentialformen in Analysis, Geometrie und Physik

Author: Ilka Agricola,Thomas Friedrich

Publisher: Springer-Verlag

ISBN: 3834896721

Category: Mathematics

Page: 313

View: 5219

Dieses Lehrbuch eignet sich als Fortsetzungskurs in Analysis nach den Grundvorlesungen im ersten Studienjahr. Die Vektoranalysis ist ein klassisches Teilgebiet der Mathematik mit vielfältigen Anwendungen, zum Beispiel in der Physik. Das Buch führt die Studierenden in die Welt der Differentialformen und Analysis auf Untermannigfaltigkeiten des Rn ein. Teile des Buches können auch sehr gut für Vorlesungen in Differentialgeometrie oder Mathematischer Physik verwendet werden. Der Text enthält viele ausführliche Beispiele mit vollständigem Lösungsweg, die zur Übung hilfreich sind. Zahlreiche Abbildungen veranschaulichen den Text. Am Ende jedes Kapitels befinden sich weitere Übungsaufgaben. In der ersten Auflage erschien das Buch unter dem Titel "Globale Analysis". Der Text wurde an vielen Stellen überarbeitet. Fast alle Bilder wurden neu erstellt. Inhaltliche Ergänzungen wurden u. a. in der Differentialgeometrie sowie der Elektrodynamik vorgenommen.
Posted in Mathematics

Kategorien und Funktoren

Author: Bodo Pareigis

Publisher: N.A

ISBN: N.A

Category: Categories (Mathematics)

Page: 192

View: 8758

Posted in Categories (Mathematics)

Hilbert

Author: Constance Reid,Hermann Weyl

Publisher: Springer-Verlag

ISBN: 3662286157

Category: Mathematics

Page: 290

View: 7724

Posted in Mathematics

Differentialgeometrie, Topologie und Physik

Author: Mikio Nakahara

Publisher: Springer-Verlag

ISBN: 3662453002

Category: Science

Page: 597

View: 3781

Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.
Posted in Science

Programmieren mit R

Author: Uwe Ligges

Publisher: Springer-Verlag

ISBN: 3540267328

Category: Mathematics

Page: 237

View: 9478

R ist eine objekt-orientierte und interpretierte Sprache und Programmierumgebung für Datenanalyse und Grafik - frei erhältlich unter der GPL. Ziel dieses Buches ist es, nicht nur ausführlich in die Grundlagen der Sprache R einzuführen, sondern auch ein Verständnis der Struktur der Sprache zu vermitteln. Leicht können so eigene Methoden umgesetzt, Objektklassen definiert und ganze Pakete aus Funktionen und zugehöriger Dokumentation zusammengestellt werden. Die enormen Grafikfähigkeiten von R werden detailliert beschrieben. Das Buch richtet sich an alle, die R als flexibles Werkzeug zur Datenenalyse und -visualisierung einsetzen möchten: Studierende, die Daten in Projekten oder für ihre Diplomarbeit analysieren möchten, Forschende, die neue Methoden ausprobieren möchten, und diejenigen, die in der Wirtschaft täglich Daten aufbereiten, analysieren und anderen in komprimierter Form präsentieren.
Posted in Mathematics

Special Relativity

Author: Nicholas M.J. Woodhouse

Publisher: Springer-Verlag

ISBN: 3540466762

Category: Science

Page: 88

View: 9919

Posted in Science

Partielle Differentialgleichungen

Eine Einführung

Author: Walter A. Strauss

Publisher: Springer-Verlag

ISBN: 366312486X

Category: Mathematics

Page: 458

View: 1789

Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.
Posted in Mathematics

Pascal, Fermat und die Berechnung des Glücks

eine Reise in die Geschichte der Mathematik

Author: Keith J. Devlin

Publisher: C.H.Beck

ISBN: 9783406590993

Category: Wahrscheinlichkeitstheorie - Geschichte

Page: 204

View: 2177

Der Autor stellt die Entstehung der Wahrscheinlichkeitsrechnung und den damit verbundenen Wandel des menschlichen Alltagslebens dar.
Posted in Wahrscheinlichkeitstheorie - Geschichte

Differentialgeometrie

Kurven - Flächen - Mannigfaltigkeiten

Author: Wolfgang Kühnel

Publisher: Springer-Verlag

ISBN: 3834896551

Category: Mathematics

Page: 280

View: 9766

Dieses Buch ist eine Einführung in die Differentialgeometrie. Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Im Laufe der Neuauflagen wurde der Text erweitert, neue Aufgaben wurden hinzugefügt und am Ende des Buches wurden zusätzliche Hinweise zur Lösung der Übungsaufgaben ergänzt. Der Text wurde für die fünfte Auflage gründlich durchgesehen und an einigen Stellen verbessert.
Posted in Mathematics

Das lebendige Theorem

Author: Cédric Villani

Publisher: S. Fischer Verlag

ISBN: 3104025665

Category: Mathematics

Page: 304

View: 2913

Im Kopf eines Genies – der Bericht von einem mathematischen Abenteuer und der Roman eines sehr erfolgreichen Forschers Cédric Villani gilt als Kandidat für die begehrte Fields-Medaille, eine Art Nobelpreis für Mathematiker. Sie wird aber nur alle vier Jahre vergeben, und man muss unter 40 sein. Er hat also nur eine Chance. Unmöglich! Unmöglich? Fieberhaft macht er sich an die Arbeit. Jetzt erzählt er seine Geschichte, und ihm gelingt das Unglaubliche: Wir werden direkte Zeugen der Denkprozesse eines Mathematikers, und das, ohne die dazugehörigen Formeln verstehen zu müssen. Ein Buch, so einzigartig wie sein Autor.
Posted in Mathematics

Differentialgeometrie von Kurven und Flächen

Author: Manfredo P. do Carmo

Publisher: Springer-Verlag

ISBN: 3322850722

Category: Technology & Engineering

Page: 263

View: 8852

Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang
Posted in Technology & Engineering

Grundzüge der Mengenlehre

Author: Felix Hausdorff

Publisher: American Mathematical Soc.

ISBN: 9780828400619

Category: Mathematics

Page: 476

View: 3374

This reprint of the original 1914 edition of this famous work contains many topics that had to be omitted from later editions, notably, Symmetric Sets, Principle of Duality, most of the ``Algebra'' of Sets, Partially Ordered Sets, Arbitrary Sets of Complexes, Normal Types, Initial and Final Ordering, Complexes of Real Numbers, General Topological Spaces, Euclidean Spaces, the Special Methods Applicable in the Euclidean Plane, Jordan's Separation Theorem, the Theory of Content and Measure, the Theory of the Lebesgue Integral. The text is in German.
Posted in Mathematics

Fünf Minuten Mathematik

100 Beiträge der Mathematik-Kolumne der Zeitung DIE WELT

Author: Ehrhard Behrends

Publisher: Springer-Verlag

ISBN: 3834890138

Category: Mathematics

Page: 254

View: 8099

Das Buch enthält einen Querschnitt durch die moderne und alltägliche Mathematik. Die 100 Beiträge sind aus der Kolumne "Fünf Minuten Mathematik" hervorgegangen, in der verschiedene mathematische Gebiete in einer für Laien verständlichen Sprache behandelt wurden. Diese Beiträge wurden für das Buch überarbeitet, stark erweitert und mit Illustrationen versehen. Der Leser findet hier den mathematischen Hintergrund und viele attraktive Fotos zur Veranschaulichung der Mathematik.
Posted in Mathematics