Differential Equations and Dynamical Systems

Author: Lawrence Perko

Publisher: Springer Science & Business Media

ISBN: 1461300037

Category: Mathematics

Page: 557

View: 8385

This textbook presents a systematic study of the qualitative and geometric theory of nonlinear differential equations and dynamical systems. Although the main topic of the book is the local and global behavior of nonlinear systems and their bifurcations, a thorough treatment of linear systems is given at the beginning of the text. All the material necessary for a clear understanding of the qualitative behavior of dynamical systems is contained in this textbook, including an outline of the proof and examples illustrating the proof of the Hartman-Grobman theorem. In addition to minor corrections and updates throughout, this new edition includes materials on higher order Melnikov theory and the bifurcation of limit cycles for planar systems of differential equations.
Posted in Mathematics

Differential Equations: A Dynamical Systems Approach

Ordinary Differential Equations

Author: John H. Hubbard,Beverly H. West

Publisher: Springer

ISBN: 1461209374

Category: Mathematics

Page: 350

View: 6017

This corrected third printing retains the authors'main emphasis on ordinary differential equations. It is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. The authors have taken the view that a differential equations theory defines functions; the object of the theory is to understand the behaviour of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods, and the companion software, MacMath, is designed to bring these notions to life.
Posted in Mathematics

Differential Equations

A Dynamical Systems Approach - Ordinary Differential Equations

Author: John H. Hubbard,Beverly H. West

Publisher: Copernicus

ISBN: N.A

Category: Differential equations

Page: 350

View: 3848

This is a corrected third printing of the first part of the text Differential Equations: A Dynamical Systems Approach written by John Hubbard and Beverly West. The authors' main emphasis in this book is on ordinary differential equations. The book is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. Traditional courses on differential equations focus on techniques leading to solutions. Yet most differential equations do not admit solutions which can be written in elementary terms. The authors have taken the view that a differential equations defines functions; the object of the theory is to understand the behavior of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods. The companion software, MacMath, is designed to bring these notions to life.
Posted in Differential equations

Differential Equations, Dynamical Systems, and an Introduction to Chaos

Author: Morris W. Hirsch,Stephen Smale,Robert L. Devaney

Publisher: Academic Press

ISBN: 0123820103

Category: Mathematics

Page: 418

View: 3463

Hirsch, Devaney, and Smale's classic Differential Equations, Dynamical Systems, and an Introduction to Chaos has been used by professors as the primary text for undergraduate and graduate level courses covering differential equations. It provides a theoretical approach to dynamical systems and chaos written for a diverse student population among the fields of mathematics, science, and engineering. Prominent experts provide everything students need to know about dynamical systems as students seek to develop sufficient mathematical skills to analyze the types of differential equations that arise in their area of study. The authors provide rigorous exercises and examples clearly and easily by slowly introducing linear systems of differential equations. Calculus is required as specialized advanced topics not usually found in elementary differential equations courses are included, such as exploring the world of discrete dynamical systems and describing chaotic systems. Classic text by three of the world's most prominent mathematicians Continues the tradition of expository excellence Contains updated material and expanded applications for use in applied studies
Posted in Mathematics

Ordinary Differential Equations with Applications

Author: Carmen Chicone

Publisher: Springer Science & Business Media

ISBN: 0387307699

Category: Mathematics

Page: 636

View: 1912

Based on a one-year course taught by the author to graduates at the University of Missouri, this book provides a student-friendly account of some of the standard topics encountered in an introductory course of ordinary differential equations. In a second semester, these ideas can be expanded by introducing more advanced concepts and applications. A central theme in the book is the use of Implicit Function Theorem, while the latter sections of the book introduce the basic ideas of perturbation theory as applications of this Theorem. The book also contains material differing from standard treatments, for example, the Fiber Contraction Principle is used to prove the smoothness of functions that are obtained as fixed points of contractions. The ideas introduced in this section can be extended to infinite dimensions.
Posted in Mathematics

Nonlinear Differential Equations and Dynamical Systems

Author: Ferdinand Verhulst

Publisher: Springer Science & Business Media

ISBN: 3642614531

Category: Mathematics

Page: 306

View: 5874

For lecture courses that cover the classical theory of nonlinear differential equations associated with Poincare and Lyapunov and introduce the student to the ideas of bifurcation theory and chaos, this text is ideal. Its excellent pedagogical style typically consists of an insightful overview followed by theorems, illustrative examples, and exercises.
Posted in Mathematics

Partielle Differentialgleichungen und numerische Methoden

Author: Stig Larsson,Vidar Thomee

Publisher: Springer-Verlag

ISBN: 3540274227

Category: Mathematics

Page: 272

View: 4040

Das Buch ist für Studenten der angewandten Mathematik und der Ingenieurwissenschaften auf Vordiplomniveau geeignet. Der Schwerpunkt liegt auf der Verbindung der Theorie linearer partieller Differentialgleichungen mit der Theorie finiter Differenzenverfahren und der Theorie der Methoden finiter Elemente. Für jede Klasse partieller Differentialgleichungen, d.h. elliptische, parabolische und hyperbolische, enthält der Text jeweils ein Kapitel zur mathematischen Theorie der Differentialgleichung gefolgt von einem Kapitel zu finiten Differenzenverfahren sowie einem zu Methoden der finiten Elemente. Den Kapiteln zu elliptischen Gleichungen geht ein Kapitel zum Zweipunkt-Randwertproblem für gewöhnliche Differentialgleichungen voran. Ebenso ist den Kapiteln zu zeitabhängigen Problemen ein Kapitel zum Anfangswertproblem für gewöhnliche Differentialgleichungen vorangestellt. Zudem gibt es ein Kapitel zum elliptischen Eigenwertproblem und zur Entwicklung nach Eigenfunktionen. Die Darstellung setzt keine tiefer gehenden Kenntnisse in Analysis und Funktionalanalysis voraus. Das erforderliche Grundwissen über lineare Funktionalanalysis und Sobolev-Räume wird im Anhang im Überblick besprochen.
Posted in Mathematics

Differential Equations: Methods and Applications

Author: Belkacem Said-Houari

Publisher: Springer

ISBN: 3319257358

Category: Mathematics

Page: 212

View: 2122

This book presents a variety of techniques for solving ordinary differential equations analytically and features a wealth of examples. Focusing on the modeling of real-world phenomena, it begins with a basic introduction to differential equations, followed by linear and nonlinear first order equations and a detailed treatment of the second order linear equations. After presenting solution methods for the Laplace transform and power series, it lastly presents systems of equations and offers an introduction to the stability theory.To help readers practice the theory covered, two types of exercises are provided: those that illustrate the general theory, and others designed to expand on the text material. Detailed solutions to all the exercises are included.The book is excellently suited for use as a textbook for an undergraduate class (of all disciplines) in ordinary differential equations.
Posted in Mathematics

Differentialgleichungen und ihre Anwendungen

Author: Martin Braun

Publisher: Springer-Verlag

ISBN: 3642975151

Category: Mathematics

Page: 598

View: 9789

Dieses richtungsweisende Lehrbuch für die Anwendung der Mathematik in anderen Wissenschaftszweigen gibt eine Einführung in die Theorie der gewöhnlichen Differentialgleichungen. Fortran und APL-Programme geben den Studenten die Möglichkeit, verschiedene numerische Näherungsverfahren an ihrem PC selbst durchzurechnen. Aus den Besprechungen: "Die Darstellung ist überall mathematisch streng und zudem ungemein anregend. Abgesehen von manchen historischen Bemerkungen ... tragen dazu die vielen mit ausführlichem Hintergrund sehr eingehend entwickelten praktischen Anwendungen bei. ... Besondere Aufmerksamkeit wird der physikalisch und technisch so wichtigen Frage nach Stabilität von Lösungen eines Systems von Differentialgleichungen gewidmet. Das Buch ist wegen seiner geringen Voraussetzungen und vorzüglichen Didaktik schon für alle Studenten des 3. Semesters geeignet; seine eminent praktische Haltung empfiehlt es aber auch für alle Physiker, die mit Differentialgleichungen und ihren Anwendungen umzugehen haben." #Physikalische Blätter#
Posted in Mathematics

Einführung in die Mechanik und Symmetrie

Eine grundlegende Darstellung klassischer mechanischer Systeme

Author: Jerrold E. Marsden,Tudor S. Ratiu

Publisher: Springer-Verlag

ISBN: 3642568599

Category: Mathematics

Page: 598

View: 2469

Symmetrie spielt in der Mechanik eine große Rolle. Dieses Buch beschreibt die Entwicklung zugrunde liegender Theorien. Besonderes Gewicht wird der Symmetrie beigemessen. Ursache hierfür sind Entwicklungen im Bereich dynamischer Systeme, der Einsatz geometrischer Verfahren und neue Anwendungen. Dieses Lehrbuch stellt Grundlagen bereit und beschreibt zahlreiche spezifische Anwendungen. Interessant für Physiker und Ingenieure. Ausgewählte Beispiele, Anwendungen, aktuelle Verfahren/Techniken veranschaulichen die Theorie.
Posted in Mathematics

Scientific Computing with Ordinary Differential Equations

Author: Peter Deuflhard,Folkmar Bornemann

Publisher: Springer Science & Business Media

ISBN: 0387215824

Category: Mathematics

Page: 486

View: 8360

Well-known authors; Includes topics and results that have previously not been covered in a book; Uses many interesting examples from science and engineering; Contains numerous homework exercises; Scientific computing is a hot and topical area
Posted in Mathematics

Nonlinear Ordinary Differential Equations

An Introduction for Scientists and Engineers

Author: Dominic Jordan,Peter Smith

Publisher: Oxford University Press on Demand

ISBN: 0199208247

Category: Mathematics

Page: 531

View: 8450

Thoroughly updated and expanded 4th edition of the classic text, including numerous worked examples, diagrams and exercises. An ideal resource for students and lecturers in engineering, mathematics and the sciences it is published alongside a separate Problems and Solutions Sourcebook containing over 500 problems and fully-worked solutions.
Posted in Mathematics

Partial Differential Equations

Basic Theory

Author: Michael E. Taylor

Publisher: Springer Science & Business Media

ISBN: 9780387946542

Category: Mathematics

Page: 563

View: 6057

Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modem as weIl as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematical Sci ences (AMS) series, which will focus on advanced textbooks and research level monographs.
Posted in Mathematics

Differential Equations and Their Applications

An Introduction to Applied Mathematics

Author: Martin Braun

Publisher: Springer Science & Business Media

ISBN: 1461243602

Category: Mathematics

Page: 578

View: 997

Used in undergraduate classrooms across the USA, this is a clearly written, rigorous introduction to differential equations and their applications. Fully understandable to students who have had one year of calculus, this book distinguishes itself from other differential equations texts through its engaging application of the subject matter to interesting scenarios. This fourth edition incorporates earlier introductory material on bifurcation theory and adds a new chapter on Sturm-Liouville boundary value problems. Computer programs in C, Pascal, and Fortran are presented throughout the text to show readers how to apply differential equations towards quantitative problems.
Posted in Mathematics

Ordinary Differential Equations

Second Edition

Author: Philip Hartman

Publisher: SIAM

ISBN: 0898715105

Category: Mathematics

Page: 612

View: 2460

Covers the fundamentals of the theory of ordinary differential equations.
Posted in Mathematics

Differentialgleichungen für Dummies

Author: Steven Holzner

Publisher: John Wiley & Sons

ISBN: 3527658041

Category: Mathematics

Page: 327

View: 1829

Als die Gute Fee H?nschen fragte: "was w?nschst Du dir?", antwortete er: "Keine Differentialgleichungen mehr in der Schule": Hans im Gl?ck! Jetzt k?nnen Sie auch auf eine Gute Fee warten, oder sich dieses Buch kaufen. Sie finden hier Hilfe sollten Sie mit linearen und nichtlinearen gew?hnlichen Differentialgleichungen ihre liebe M?he haben, seien sie nun erster, zweiter oder h?herer Ordnung. Sie lernen auch, was Sie zu Laplace Transformation, Potenzreihen und vielen anderen vertrackten Problemen wissen sollten. Sehen Sie der Realit?t ins Auge, mit diesem Buch.
Posted in Mathematics

Differential Equations, Dynamical Systems, and an Introduction to Chaos

Author: Morris W. Hirsch,Stephen Smale,Robert L. Devaney

Publisher: Academic Press

ISBN: 0123497035

Category: Mathematics

Page: 417

View: 5084

This text is about the dynamical aspects of ordinary differential equations and the relations between dynamical systems and certain fields outside pure mathematics. It is an update of one of Academic Press's most successful mathematics texts ever published, which has become the standard textbook for graduate courses in this area. The authors are tops in the field of advanced mathematics. Steve Smale is a Field's Medalist, which equates to being a Nobel prize winner in mathematics. Bob Devaney has authored several leading books in this subject area. Linear algebra prerequisites toned down from first edition Inclusion of analysis of examples of chaotic systems, including Lorenz, Rosssler, and Shilnikov systems Bifurcation theory included throughout.
Posted in Mathematics

Partielle Differentialgleichungen

Eine Einführung

Author: Walter A. Strauss

Publisher: Springer-Verlag

ISBN: 366312486X

Category: Mathematics

Page: 458

View: 3978

Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.
Posted in Mathematics

Gewöhnliche Differentialgleichungen

Author: Vladimir I. Arnold

Publisher: Springer-Verlag

ISBN: 3642564801

Category: Mathematics

Page: 344

View: 5878

nen (die fast unverändert in moderne Lehrbücher der Analysis übernommen wurde) ermöglichten ihm nach seinen eigenen Worten, "in einer halben Vier telstunde" die Flächen beliebiger Figuren zu vergleichen. Newton zeigte, daß die Koeffizienten seiner Reihen proportional zu den sukzessiven Ableitungen der Funktion sind, doch ging er darauf nicht weiter ein, da er zu Recht meinte, daß die Rechnungen in der Analysis bequemer auszuführen sind, wenn man nicht mit höheren Ableitungen arbeitet, sondern die ersten Glieder der Reihenentwicklung ausrechnet. Für Newton diente der Zusammenhang zwischen den Koeffizienten der Reihe und den Ableitungen eher dazu, die Ableitungen zu berechnen als die Reihe aufzustellen. Eine von Newtons wichtigsten Leistungen war seine Theorie des Sonnensy stems, die in den "Mathematischen Prinzipien der Naturlehre" ("Principia") ohne Verwendung der mathematischen Analysis dargestellt ist. Allgemein wird angenommen, daß Newton das allgemeine Gravitationsgesetz mit Hilfe seiner Analysis entdeckt habe. Tatsächlich hat Newton (1680) lediglich be wiesen, daß die Bahnkurven in einem Anziehungsfeld Ellipsen sind, wenn die Anziehungskraft invers proportional zum Abstandsquadrat ist: Auf das Ge setz selbst wurde Newton von Hooke (1635-1703) hingewiesen (vgl. § 8) und es scheint, daß es noch von weiteren Forschern vermutet wurde.
Posted in Mathematics