Data Mining for Business Analytics

Concepts, Techniques, and Applications with XLMiner

Author: Galit Shmueli,Peter C. Bruce,Nitin R. Patel

Publisher: John Wiley & Sons

ISBN: 1118729242

Category: Mathematics

Page: 552

View: 9523

Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition presents an applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies. Readers will work with all of the standard data mining methods using the Microsoft® Office Excel® add-in XLMiner® to develop predictive models and learn how to obtain business value from Big Data. Featuring updated topical coverage on text mining, social network analysis, collaborative filtering, ensemble methods, uplift modeling and more, the Third Edition also includes: Real-world examples to build a theoretical and practical understanding of key data mining methods End-of-chapter exercises that help readers better understand the presented material Data-rich case studies to illustrate various applications of data mining techniques Completely new chapters on social network analysis and text mining A companion site with additional data sets, instructors material that include solutions to exercises and case studies, and Microsoft PowerPoint® slides https://www.dataminingbook.com Free 140-day license to use XLMiner for Education software Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses as well as professional programs on data mining, predictive modeling, and Big Data analytics. The new edition is also a unique reference for analysts, researchers, and practitioners working with predictive analytics in the fields of business, finance, marketing, computer science, and information technology. Praise for the Second Edition "…full of vivid and thought-provoking anecdotes... needs to be read by anyone with a serious interest in research and marketing."– Research Magazine "Shmueli et al. have done a wonderful job in presenting the field of data mining - a welcome addition to the literature." – ComputingReviews.com "Excellent choice for business analysts...The book is a perfect fit for its intended audience." – Keith McCormick, Consultant and Author of SPSS Statistics For Dummies, Third Edition and SPSS Statistics for Data Analysis and Visualization Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, The Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 journal articles, books, textbooks and book chapters. Peter C. Bruce is President and Founder of the Institute for Statistics Education at www.statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective, also published by Wiley. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad for 15 years.
Posted in Mathematics

Data Mining for Business Analytics

Concepts, Techniques, and Applications in R

Author: Galit Shmueli,Peter C. Bruce,Inbal Yahav,Nitin R. Patel,Kenneth C. Lichtendahl, Jr.

Publisher: John Wiley & Sons

ISBN: 1118879333

Category: Mathematics

Page: 574

View: 1987

Data Mining for Business Analytics: Concepts, Techniques, and Applications in R presents an applied approach to data mining concepts and methods, using R software for illustration Readers will learn how to implement a variety of popular data mining algorithms in R (a free and open-source software) to tackle business problems and opportunities. This is the fifth version of this successful text, and the first using R. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: • Two new co-authors, Inbal Yahav and Casey Lichtendahl, who bring both expertise teaching business analytics courses using R, and data mining consulting experience in business and government • Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students • More than a dozen case studies demonstrating applications for the data mining techniques described • End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented • A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions www.dataminingbook.com Data Mining for Business Analytics: Concepts, Techniques, and Applications in R is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “ This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 publications including books. Peter C. Bruce is President and Founder of the Institute for Statistics Education at Statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective (Wiley) and co-author of Practical Statistics for Data Scientists: 50 Essential Concepts (O’Reilly). Inbal Yahav, PhD, is Professor at the Graduate School of Business Administration at Bar-Ilan University, Israel. She teaches courses in social network analysis, advanced research methods, and software quality assurance. Dr. Yahav received her PhD in Operations Research and Data Mining from the University of Maryland, College Park. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad, for 15 years. Kenneth C. Lichtendahl, Jr., PhD, is Associate Professor at the University of Virginia. He is the Eleanor F. and Phillip G. Rust Professor of Business Administration and teaches MBA courses in decision analysis, data analysis and optimization, and managerial quantitative analysis. He also teaches executive education courses in strategic analysis and decision-making, and managing the corporate aviation function.
Posted in Mathematics

Data Mining for Business Analytics

Concepts, Techniques, and Applications with JMP Pro

Author: Galit Shmueli,Peter C. Bruce,Mia L. Stephens,Nitin R. Patel

Publisher: John Wiley & Sons

ISBN: 1118956621

Category: Mathematics

Page: 464

View: 6316

Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® presents an applied and interactive approach to data mining. Featuring hands-on applications with JMP Pro®, a statistical package from the SAS Institute, the book uses engaging, real-world examples to build a theoretical and practical understanding of key data mining methods, especially predictive models for classification and prediction. Topics include data visualization, dimension reduction techniques, clustering, linear and logistic regression, classification and regression trees, discriminant analysis, naive Bayes, neural networks, uplift modeling, ensemble models, and time series forecasting. Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® also includes: Detailed summaries that supply an outline of key topics at the beginning of each chapter End-of-chapter examples and exercises that allow readers to expand their comprehension of the presented material Data-rich case studies to illustrate various applications of data mining techniques A companion website with over two dozen data sets, exercises and case study solutions, and slides for instructors www.dataminingbook.com Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® is an excellent textbook for advanced undergraduate and graduate-level courses on data mining, predictive analytics, and business analytics. The book is also a one-of-a-kind resource for data scientists, analysts, researchers, and practitioners working with analytics in the fields of management, finance, marketing, information technology, healthcare, education, and any other data-rich field. Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 journal articles, books, textbooks, and book chapters, including Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition, also published by Wiley. Peter C. Bruce is President and Founder of the Institute for Statistics Education at www.statistics.com He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective and co-author of Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner ®, Third Edition, both published by Wiley. Mia Stephens is Academic Ambassador at JMP®, a division of SAS Institute. Prior to joining SAS, she was an adjunct professor of statistics at the University of New Hampshire and a founding member of the North Haven Group LLC, a statistical training and consulting company. She is the co-author of three other books, including Visual Six Sigma: Making Data Analysis Lean, Second Edition, also published by Wiley. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad, for 15 years. He is co-author of Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition, also published by Wiley.
Posted in Mathematics

Data Mining for Business Intelligence

Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner

Author: Galit Shmueli,Nitin R. Patel,Peter C. Bruce

Publisher: John Wiley & Sons

ISBN: 1118211391

Category: Mathematics

Page: 428

View: 1427

Posted in Mathematics

Introductory Statistics and Analytics

A Resampling Perspective

Author: Peter C. Bruce

Publisher: John Wiley & Sons

ISBN: 1118881338

Category: Mathematics

Page: 312

View: 9265

Concise, thoroughly class-tested primer that features basic statistical concepts in the concepts in the context of analytics, resampling, and the bootstrap A uniquely developed presentation of key statistical topics, Introductory Statistics and Analytics: A Resampling Perspective provides an accessible approach to statistical analytics, resampling, and the bootstrap for readers with various levels of exposure to basic probability and statistics. Originally class-tested at one of the first online learning companies in the discipline, www.statistics.com, the book primarily focuses on applications of statistical concepts developed via resampling, with a background discussion of mathematical theory. This feature stresses statistical literacy and understanding, which demonstrates the fundamental basis for statistical inference and demystifies traditional formulas. The book begins with illustrations that have the essential statistical topics interwoven throughout before moving on to demonstrate the proper design of studies. Meeting all of the Guidelines for Assessment and Instruction in Statistics Education (GAISE) requirements for an introductory statistics course, Introductory Statistics and Analytics: A Resampling Perspective also includes: Over 300 “Try It Yourself” exercises and intermittent practice questions, which challenge readers at multiple levels to investigate and explore key statistical concepts Numerous interactive links designed to provide solutions to exercises and further information on crucial concepts Linkages that connect statistics to the rapidly growing field of data science Multiple discussions of various software systems, such as Microsoft Office Excel®, StatCrunch, and R, to develop and analyze data Areas of concern and/or contrasting points-of-view indicated through the use of “Caution” icons Introductory Statistics and Analytics: A Resampling Perspective is an excellent primary textbook for courses in preliminary statistics as well as a supplement for courses in upper-level statistics and related fields, such as biostatistics and econometrics. The book is also a general reference for readers interested in revisiting the value of statistics.
Posted in Mathematics

Getting Started with Business Analytics

Insightful Decision-Making

Author: David Roi Hardoon,Galit Shmueli

Publisher: CRC Press

ISBN: 149875967X

Category: Business & Economics

Page: 190

View: 8730

Assuming no prior knowledge or technical skills, Getting Started with Business Analytics: Insightful Decision-Making explores the contents, capabilities, and applications of business analytics. It bridges the worlds of business and statistics and describes business analytics from a non-commercial standpoint. The authors demystify the main concepts and terminologies and give many examples of real-world applications. The first part of the book introduces business data and recent technologies that have promoted fact-based decision-making. The authors look at how business intelligence differs from business analytics. They also discuss the main components of a business analytics application and the various requirements for integrating business with analytics. The second part presents the technologies underlying business analytics: data mining and data analytics. The book helps you understand the key concepts and ideas behind data mining and shows how data mining has expanded into data analytics when considering new types of data such as network and text data. The third part explores business analytics in depth, covering customer, social, and operational analytics. Each chapter in this part incorporates hands-on projects based on publicly available data. Helping you make sound decisions based on hard data, this self-contained guide provides an integrated framework for data mining in business analytics. It takes you on a journey through this data-rich world, showing you how to deploy business analytics solutions in your organization.
Posted in Business & Economics

Data Analysis Using SQL and Excel

Author: Gordon S. Linoff

Publisher: John Wiley & Sons

ISBN: 1119021456

Category: Computers

Page: 792

View: 5119

A practical guide to data mining using SQL and Excel Data Analysis Using SQL and Excel, 2nd Edition shows you how to leverage the two most popular tools for data query and analysis—SQL and Excel—to perform sophisticated data analysis without the need for complex and expensive data mining tools. Written by a leading expert on business data mining, this book shows you how to extract useful business information from relational databases. You'll learn the fundamental techniques before moving into the "where" and "why" of each analysis, and then learn how to design and perform these analyses using SQL and Excel. Examples include SQL and Excel code, and the appendix shows how non-standard constructs are implemented in other major databases, including Oracle and IBM DB2/UDB. The companion website includes datasets and Excel spreadsheets, and the book provides hints, warnings, and technical asides to help you every step of the way. Data Analysis Using SQL and Excel, 2nd Edition shows you how to perform a wide range of sophisticated analyses using these simple tools, sparing you the significant expense of proprietary data mining tools like SAS. Understand core analytic techniques that work with SQL and Excel Ensure your analytic approach gets you the results you need Design and perform your analysis using SQL and Excel Data Analysis Using SQL and Excel, 2nd Edition shows you how to best use the tools you already know to achieve expert results.
Posted in Computers

Modeling Online Auctions

Author: Wolfgang Jank,Galit Shmueli

Publisher: Wiley

ISBN: 0470642599

Category: Mathematics

Page: 356

View: 3894

Explore cutting-edge statistical methodologies for collecting, analyzing, and modeling online auction data Online auctions are an increasingly important marketplace, as the new mechanisms and formats underlying these auctions have enabled the capturing and recording of large amounts of bidding data that are used to make important business decisions. As a result, new statistical ideas and innovation are needed to understand bidders, sellers, and prices. Combining methodologies from the fields of statistics, data mining, information systems, and economics, Modeling Online Auctions introduces a new approach to identifying obstacles and asking new questions using online auction data. The authors draw upon their extensive experience to introduce the latest methods for extracting new knowledge from online auction data. Rather than approach the topic from the traditional game-theoretic perspective, the book treats the online auction mechanism as a data generator, outlining methods to collect, explore, model, and forecast data. Topics covered include: Data collection methods for online auctions and related issues that arise in drawing data samples from a Web site Models for bidder and bid arrivals, treating the different approaches for exploring bidder-seller networks Data exploration, such as integration of time series and cross-sectional information; curve clustering; semi-continuous data structures; and data hierarchies The use of functional regression as well as functional differential equation models, spatial models, and stochastic models for capturing relationships in auction data Specialized methods and models for forecasting auction prices and their applications in automated bidding decision rule systems Throughout the book, R and MATLAB software are used for illustrating the discussed techniques. In addition, a related Web site features many of the book's datasets and R and MATLAB code that allow readers to replicate the analyses and learn new methods to apply to their own research. Modeling Online Auctions is a valuable book for graduate-level courses on data mining and applied regression analysis. It is also a one-of-a-kind reference for researchers in the fields of statistics, information systems, business, and marketing who work with electronic data and are looking for new approaches for understanding online auctions and processes. Visit this book's companion website by clicking here
Posted in Mathematics

Excel Basics to Blackbelt

An Accelerated Guide to Decision Support Designs

Author: Elliot Bendoly

Publisher: Cambridge University Press

ISBN: 1107245281

Category: Business & Economics

Page: 400

View: 5265

This second edition of Excel Basics to Blackbelt capitalizes on the success of the first edition and leverages some of the advancements in visualization, data analysis, and sharing capabilities that have emerged over the past five years. As with the original text, the second edition is intended to serve as an accelerated guide to decision support designs for consultants and service professionals. This 'fast track' enables a ramping up of skills in Excel for those who may have never used it to reach a level of mastery that will allow them to integrate Excel with widely available associated applications, make use of intelligent data visualization and analysis techniques, automate activity through basic VBA designs, and develop easy-to-use interfaces for customizing use. In other words, this book provides users with lessons and examples on integrative Excel use that are not available from alternative texts.
Posted in Business & Economics

Data Science and Big Data Analytics

Discovering, Analyzing, Visualizing and Presenting Data

Author: EMC Education Services

Publisher: John Wiley & Sons

ISBN: 1118876059

Category: Computers

Page: 432

View: 1526

Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Corresponding data sets are available at www.wiley.com/go/9781118876138. Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!
Posted in Computers

Practical Time Series Forecasting

A Hands-On Guide

Author: Galit Shmueli

Publisher: N.A

ISBN: 9780991576661

Category:

Page: N.A

View: 5396

PRACTICAL TIME SERIES FORECASTING is a hands-on introduction to quantitative forecasting of time series. Quantitative forecasting, known as forecasting analytics, is an important component of decision making in a wide range of areas and across many business functions including economic forecasting, workload projections, sales forecasts, and transportation demand. Forecasting is also widely used in automated applications such as forecasting flight delays, web keyword search volume, and weather. Forecasting is heavily used in many areas outside of business, such as in demography and climatology. This book introduces readers to the most popular statistical models and data mining algorithms used in practice. It covers issues relating to different steps of the forecasting process, from goal definition through data collection, visualization, pre-processing, modeling, performance evaluation to implementation and communication. The third edition offers improved organization, updated software screenshots, and additional material.PRACTICAL TIME SERIES FORECASTING is suitable for courses on forecasting at the upper-undergraduate and graduate levels, and in professional business analytics and data science programs. It offers clear explanations, examples, end-of-chapter problems and cases. Methods are illustrated using XLMiner®, an Excel® add-on. However, any software that has time series forecasting capabilities can be used with the book. For R users, an R edition of this textbook is also available.
Posted in

Database Marketing

Analyzing and Managing Customers

Author: Robert C. Blattberg,Byung-Do Kim,Scott A. Neslin

Publisher: Springer Science & Business Media

ISBN: 0387725792

Category: Business & Economics

Page: 872

View: 4537

Database marketing is at the crossroads of technology, business strategy, and customer relationship management. Enabled by sophisticated information and communication systems, today’s organizations have the capacity to analyze customer data to inform and enhance every facet of the enterprise—from branding and promotion campaigns to supply chain management to employee training to new product development. Based on decades of collective research, teaching, and application in the field, the authors present the most comprehensive treatment to date of database marketing, integrating theory and practice. Presenting rigorous models, methodologies, and techniques (including data collection, field testing, and predictive modeling), and illustrating them through dozens of examples, the authors cover the full spectrum of principles and topics related to database marketing. "This is an excellent in-depth overview of both well-known and very recent topics in customer management models. It is an absolute must for marketers who want to enrich their knowledge on customer analytics." (Peter C. Verhoef, Professor of Marketing, Faculty of Economics and Business, University of Groningen) "A marvelous combination of relevance and sophisticated yet understandable analytical material. It should be a standard reference in the area for many years." (Don Lehmann, George E. Warren Professor of Business, Columbia Business School) "The title tells a lot about the book's approach—though the cover reads, "database," the content is mostly about customers and that's where the real-world action is. Most enjoyable is the comprehensive story – in case after case – which clearly explains what the analysis and concepts really mean. This is an essential read for those interested in database marketing, customer relationship management and customer optimization." (Richard Hochhauser, President and CEO, Harte-Hanks, Inc.) "In this tour de force of careful scholarship, the authors canvass the ever expanding literature on database marketing. This book will become an invaluable reference or text for anyone practicing, researching, teaching or studying the subject." (Edward C. Malthouse, Theodore R. and Annie Laurie Sills Associate Professor of Integrated Marketing Communications, Northwestern University)
Posted in Business & Economics

Using Classification and Regression Trees

A Practical Primer

Author: Xin Ma

Publisher: IAP

ISBN: 1641132396

Category: Education

Page: 167

View: 1807

Classification and regression trees (CART) is one of the several contemporary statistical techniques with good promise for research in many academic fields. There are very few books on CART, especially on applied CART. This book, as a good practical primer with a focus on applications, introduces the relatively new statistical technique of CART as a powerful analytical tool. The easy-to-understand (non-technical) language and illustrative graphs (tables) as well as the use of the popular statistical software program (SPSS) appeal to readers without strong statistical background. This book helps readers understand the foundation, the operation, and the interpretation of CART analysis, thus becoming knowledgeable consumers and skillful users of CART. The chapter on advanced CART procedures not yet well-discussed in the literature allows readers to effectively seek further empowerment of their research designs by extending the analytical power of CART to a whole new level. This highly practical book is specifically written for academic researchers, data analysts, and graduate students in many disciplines such as economics, social sciences, medical sciences, and sport sciences who do not have strong statistical background but still strive to take full advantage of CART as a powerful analytical tool for research in their fields.
Posted in Education

Handbook of Statistical Analysis and Data Mining Applications

Author: Robert Nisbet,Gary Miner,Ken Yale

Publisher: Elsevier

ISBN: 0124166458

Category: Mathematics

Page: 822

View: 3433

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. Includes input by practitioners for practitioners Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models Contains practical advice from successful real-world implementations Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Posted in Mathematics

Principles of Marketing Engineering and Analytics, 3rd Edition

Author: Gary L. Lilien,Arvind Rangaswamy,Arnaud De Bruyn

Publisher: DecisionPro

ISBN: 098576483X

Category: Business & Economics

Page: 328

View: 477

We have designed this book primarily for the business school student or marketing manager, who, with minimal background and technical training, must understand and employ the basic tools and models associated with Marketing Engineering. The 21st century business environment demands more analysis and rigor in marketing decision making. Increasingly, marketing decision making resembles design engineering—putting together concepts, data, analyses, and simulations to learn about the marketplace and to design effective marketing plans. While many view traditional marketing as art and some view it as science, the new marketing increasingly looks like engineering (that is, combining art and science to solve specific problems). We offer an accessible overview of the most widely used marketing engineering concepts and tools and show how they drive the collection of the right data and information to perform the right analyses to make better marketing plans, better product designs, and better marketing decisions. ** The latest edition includes up-to-date examples and references as well as a new chapter on the digital online revolution in marketing and its implications for online advertising. In addition, the edition now incorporates some basic financial concepts (ROI, Breakeven Analysis, and Opportunity Cost) and other tools essential to the new domain of marketing analytics. **
Posted in Business & Economics

SPSS Statistics for Data Analysis and Visualization

Author: Keith McCormick,Jesus Salcedo

Publisher: John Wiley & Sons

ISBN: 1119005574

Category: Computers

Page: 528

View: 4660

Dive deeper into SPSS Statistics for more efficient, accurate, and sophisticated data analysis and visualization SPSS Statistics for Data Analysis and Visualization goes beyond the basics of SPSS Statistics to show you advanced techniques that exploit the full capabilities of SPSS. The authors explain when and why to use each technique, and then walk you through the execution with a pragmatic, nuts and bolts example. Coverage includes extensive, in-depth discussion of advanced statistical techniques, data visualization, predictive analytics, and SPSS programming, including automation and integration with other languages like R and Python. You'll learn the best methods to power through an analysis, with more efficient, elegant, and accurate code. IBM SPSS Statistics is complex: true mastery requires a deep understanding of statistical theory, the user interface, and programming. Most users don't encounter all of the methods SPSS offers, leaving many little-known modules undiscovered. This book walks you through tools you may have never noticed, and shows you how they can be used to streamline your workflow and enable you to produce more accurate results. Conduct a more efficient and accurate analysis Display complex relationships and create better visualizations Model complex interactions and master predictive analytics Integrate R and Python with SPSS Statistics for more efficient, more powerful code These "hidden tools" can help you produce charts that simply wouldn't be possible any other way, and the support for other programming languages gives you better options for solving complex problems. If you're ready to take advantage of everything this powerful software package has to offer, SPSS Statistics for Data Analysis and Visualization is the expert-led training you need.
Posted in Computers

Practical Management Science

Author: Wayne L. Winston,S. Christian Albright

Publisher: Cengage Learning

ISBN: 1337671983

Category: Business & Economics

Page: 50

View: 1617

Take full advantage of the power of spreadsheet modeling with the guidance in PRACTICAL MANAGEMENT SCIENCE, 6E, geared entirely to Excel 2016. This edition integrates modeling into all functional areas of business -- finance, marketing, operations management -- using real examples and real data. The book emphasizes applied, relevant learning while presenting the right amount of theory to ensure readers gain a strong foundation. Exercises offer practical, hands-on experience working with the methodologies. The authors focus on modeling rather than algebraic formulations or memorization of particular models. This edition provides new and updated cases as well as a new chapter on data mining. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Posted in Business & Economics

Managing the Information Technology Resource

Leadership in the Information Age

Author: Jerry N. Luftman,Christine V. Bullen

Publisher: Prentice Hall

ISBN: 9780130351265

Category: Business & Economics

Page: 414

View: 9422

Managing the Information Technology Resource: Leadership in the Information Age.
Posted in Business & Economics

The Top Ten Algorithms in Data Mining

Author: Xindong Wu,Vipin Kumar

Publisher: CRC Press

ISBN: 9781420089653

Category: Computers

Page: 208

View: 9033

Identifying some of the most influential algorithms that are widely used in the data mining community, The Top Ten Algorithms in Data Mining provides a description of each algorithm, discusses its impact, and reviews current and future research. Thoroughly evaluated by independent reviewers, each chapter focuses on a particular algorithm and is written by either the original authors of the algorithm or world-class researchers who have extensively studied the respective algorithm. The book concentrates on the following important algorithms: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. Examples illustrate how each algorithm works and highlight its overall performance in a real-world application. The text covers key topics—including classification, clustering, statistical learning, association analysis, and link mining—in data mining research and development as well as in data mining, machine learning, and artificial intelligence courses. By naming the leading algorithms in this field, this book encourages the use of data mining techniques in a broader realm of real-world applications. It should inspire more data mining researchers to further explore the impact and novel research issues of these algorithms.
Posted in Computers

Business Analytics, Global Edition

Author: James R. Evans

Publisher: Pearson Higher Ed

ISBN: 1292095458

Category: Business & Economics

Page: 656

View: 4892

For undergraduate or graduate business students. A balanced and holistic approach to business analytics Business Analytics, Second Edition teaches the fundamental concepts of the emerging field of business analytics and provides vital tools in understanding how data analysis works in today’s organizations. Students will learn to apply basic business analytics principles, communicate with analytics professionals, and effectively use and interpret analytic models to make better business decisions. Included access to commercial grade analytics software gives students real-world experience and career-focused value. Author James Evans takes a balanced, holistic approach and looks at business analytics from descriptive, and predictive perspectives.
Posted in Business & Economics