Controlling the Quantum World:

The Science of Atoms, Molecules, and Photons

Author: Board on Physics and Astronomy,Committee on AMO2010,Division on Engineering and Physical Sciences,National Research Council

Publisher: National Academies Press

ISBN: 0309102707

Category: Science

Page: 244

View: 7116

As part of the Physics 2010 decadal survey project, the Department of Energy and the National Science Foundation requested that the National Research Council assess the opportunities, over roughly the next decade, in atomic, molecular, and optical (AMO) science and technology. In particular, the National Research Council was asked to cover the state of AMO science, emphasizing recent accomplishments and identifying new and compelling scientific questions. Controlling the Quantum World, discusses both the roles and challenges for AMO science in instrumentation; scientific research near absolute zero; development of extremely intense x-ray and laser sources; exploration and control of molecular processes; photonics at the nanoscale level; and development of quantum information technology. This book also offers an assessment of and recommendations about critical issues concerning maintaining U.S. leadership in AMO science and technology.
Posted in Science

Controlling the Quantum World of Atoms, Molecules, and Photons

An Interim Report

Author: Board on Physics and Astronomy,Division on Engineering and Physical Sciences

Publisher: National Academies Press

ISBN: 030965565X

Category: Science

Page: 12

View: 2901

Atomic, molecular, and optical (AMO) science illustrates powerfully the ties of fundamental physics to society. Its very name comes from three of the twentieth century's greatest advances: the establishment of the atom as the building block of matter; the development of quantum mechanics, which made it possible to understand the inner workings of atoms and molecules; and the invention of the laser. Advances made possible by the scientists in this field touch almost every sphere of societal importance in the past century. Navigation by the stars gave way to navigation by clocks, which in turn has given way to today's navigation by atomic clocks. Laser surgery has replaced the knife for the most delicate operations. Homeland security relies on a multitude of screening technologies based on AMO research to detect toxins in the air and hidden weapons in luggage or on persons, to name a few. New drugs are now designed with the aid of x-ray scattering to determine their structure at the molecular level using AMO-based precision measurement techniques. And the global economy depends critically on high-speed telecommunication by laser light sent over thin optical fibers encircling the globe. AMO scientists are proud of their central role in science and society in the twentieth century, and they have been rewarded with numerous Nobel prizes over the past decade, including the 2005 prize in physics. But in this report we look to the future. The National Research Council of the National Academies has undertaken a study of opportunities in atomic, molecular, and optical (AMO) science and technology over roughly the next decade. The committee carrying out the AMO 2010 study, has been asked to assess the state of AMO science, emphasizing recent accomplishments and identifying new and compelling scientific questions. The six grand challenges, summarized below, will each form a chapter of the committee's final report: What is the nature of physical law? What happens at the lowest temperatures in the universe? What happens when we turn up the power? Can we control the inner workings of a molecule? How will we control and exploit the nanoworld? What lies beyond Moore's law? Controlling the Quantum World of Atoms, Molecules, and Photons: An Interim Report provides a preview of the final document. It summarizes the committee's opinion on the key opportunities in forefront AMO science and in closely related critical technologies and discusses some of the broad-scale conclusions of the final report. It also identifies how AMO science supports national R&D priorities.
Posted in Science

The Quantum World of Ultra-Cold Atoms and Light Book I: Foundations of Quantum Optics

Author: Crispin Gardiner ,Peter Zoller

Publisher: World Scientific Publishing Company

ISBN: 1783264608

Category: Science

Page: 328

View: 2984

This century has seen the development of technologies for manipulating and controlling matter and light at the level of individual photons and atoms, a realm in which physics is fully quantum mechanical. The dominant experimental technology is the laser, and the theoretical paradigm is quantum optics. The Quantum World of Ultra-Cold Atoms and Light is a trilogy, which presents the quantum optics way of thinking and its applications to quantum devices. This book — Foundations of Quantum Optics — provides an introductory text on the theoretical techniques of quantum optics, containing the elements of what one needs to teach, learn, and “think” about quantum optics. There is a particular emphasis on the classical and quantum stochastic methods which have come to dominate the field. Book II will cover applications to quantum devices, such as quantum computers and simulators, and will include the more advanced techniques necessary to describe non-classical light fields. Book III will cover the field of ultra-cold atoms, for which the quantum-optical paradigm has proved to be highly applicable for quantitative work. For more information, please visit: http://europe.worldscientific.com/quantum-world-of-ultra-cold-atoms-and-light.html
Posted in Science

The Butterfly in the Quantum World

The story of the most fascinating quantum fractal

Author: Indubala I Satija

Publisher: Morgan & Claypool Publishers

ISBN: 1681741172

Category: Science

Page: 350

View: 1591

Butterfly in the Quantum World by Indu Satija, with contributions by Douglas Hofstadter, is the first book ever to tell the story of the "Hofstadter butterfly", a beautiful and fascinating graph lying at the heart of the quantum theory of matter. The butterfly came out of a simple-sounding question: What happens if you immerse a crystal in a magnetic field? What energies can the electrons take on? From 1930 onwards, physicists struggled to answer this question, until 1974, when graduate student Douglas Hofstadter discovered that the answer was a graph consisting of nothing but copies of itself nested down infinitely many times. This wild mathematical object caught the physics world totally by surprise, and it continues to mesmerize physicists and mathematicians today. The butterfly plot is intimately related to many other important phenomena in number theory and physics, including Apollonian gaskets, the Foucault pendulum, quasicrystals, the quantum Hall effect, and many more. Its story reflects the magic, the mystery, and the simplicity of the laws of nature, and Indu Satija, in a wonderfully personal style, relates this story, enriching it with a vast number of lively historical anecdotes, many photographs, beautiful visual images, and even poems, making her book a great feast, for the eyes, for the mind and for the soul.
Posted in Science

The Quantum World of Ultra-Cold Atoms and Light Book I: Foundations of Quantum Optics

Author: Crispin Gardiner ,Peter Zoller

Publisher: World Scientific Publishing Company

ISBN: 1783264608

Category: Science

Page: 328

View: 3659

This century has seen the development of technologies for manipulating and controlling matter and light at the level of individual photons and atoms, a realm in which physics is fully quantum mechanical. The dominant experimental technology is the laser, and the theoretical paradigm is quantum optics. The Quantum World of Ultra-Cold Atoms and Light is a trilogy, which presents the quantum optics way of thinking and its applications to quantum devices. This book — Foundations of Quantum Optics — provides an introductory text on the theoretical techniques of quantum optics, containing the elements of what one needs to teach, learn, and “think” about quantum optics. There is a particular emphasis on the classical and quantum stochastic methods which have come to dominate the field. Book II will cover applications to quantum devices, such as quantum computers and simulators, and will include the more advanced techniques necessary to describe non-classical light fields. Book III will cover the field of ultra-cold atoms, for which the quantum-optical paradigm has proved to be highly applicable for quantitative work. For more information, please visit: http://europe.worldscientific.com/quantum-world-of-ultra-cold-atoms-and-light.html
Posted in Science

Quantum Control of Molecular Processes

Author: Moshe Shapiro,Paul Brumer

Publisher: John Wiley & Sons

ISBN: 3527409041

Category: Science

Page: 544

View: 8822

Written by two of the world's leading researchers in the field, this is a systematic introduction to the fundamental principles of coherent control, and to the underlying physics and chemistry. This fully updated second edition covers the latest techniques and applications, including nanostructures, attosecond processes, optical control of chirality, and weak and strong field quantum control. Developments and challenges in decoherence-sensitive condensed phase control as well as in bimolecular control are clearly described. Indispensable for atomic, molecular and chemical physicists, physical chemists, materials scientists and nanotechnologists. The authors are among the cofounders of the field of coherent control. They have published extensively on this and related subjects in chemical physics, and have received numerous awards and worldwide recognition for their research contributions.
Posted in Science

Einstein Defiant

Genius Versus Genius in the Quantum Revolution

Author: Edmund Blair Bolles

Publisher: Joseph Henry Press

ISBN: 0309167817

Category: Science

Page: 356

View: 5460

"I find the idea quite intolerable that an electron exposed to radiation should choose of its own free will, not only its moment to jump off, but also its direction. In that case, I would rather be a cobbler, or even an employee in a gaming house, than a physicist." -Albert Einstein A scandal hovers over the history of 20th century physics. Albert Einstein -- the century's greatest physicist -- was never able to come to terms with quantum mechanics, the century's greatest theoretical achievement. For physicists who routinely use both quantum laws and Einstein's ideas, this contradiction can be almost too embarrassing to dwell on. Yet Einstein was one of the founders of quantum physics and he spent many years preaching the quantum's importance and its revolutionary nature. The Danish genius Neils Bohr was another founder of quantum physics. He had managed to solve one of the few physics problems that Einstein ever shied away from, linking quantum mathematics with a new model of the atom. This leap immediately yielded results that explained electron behavior and the periodic table of the elements. Despite their mutual appreciation of the quantum's importance, these two giants of modern physics never agreed on the fundamentals of their work. In fact, they clashed repeatedly throughout the 1920s, arguing first over Einstein's theory of "light quanta"(photons), then over Niels Bohr's short-lived theory that denied the conservation of energy at the quantum level, and climactically over the new quantum mechanics that Bohr enthusiastically embraced and Einstein stubbornly defied. This contest of visions stripped the scientific imagination naked. Einstein was a staunch realist, demanding to know the physical reasons behind physical events. At odds with this approach was Bohr's more pragmatic perspective that favored theories that worked, even if he might not have a corresponding explanation of the underlying reality. Powerful and illuminating, Einstein Defiant is the first book to capture the soul and the science that inspired this dramatic duel, revealing the personalities and the passions -- and, in the end, what was at stake for the world.
Posted in Science

The Quantum Story

A history in 40 moments

Author: Jim Baggott

Publisher: OUP Oxford

ISBN: 0191604291

Category: Science

Page: 496

View: 5764

The twentieth century was defined by physics. From the minds of the world's leading physicists there flowed a river of ideas that would transport mankind to the pinnacle of wonderment and to the very depths of human despair. This was a century that began with the certainties of absolute knowledge and ended with the knowledge of absolute uncertainty. It was a century in which physicists developed weapons with the capacity to destroy our reality, whilst at the same time denying us the possibility that we can ever properly comprehend it. Almost everything we think we know about the nature of our world comes from one theory of physics. This theory was discovered and refined in the first thirty years of the twentieth century and went on to become quite simply the most successful theory of physics ever devised. Its concepts underpin much of the twenty-first century technology that we have learned to take for granted. But its success has come at a price, for it has at the same time completely undermined our ability to make sense of the world at the level of its most fundamental constituents. Rejecting the fundamental elements of uncertainty and chance implied by quantum theory, Albert Einstein once famously declared that 'God does not play dice'. Niels Bohr claimed that anybody who is not shocked by the theory has not understood it. The charismatic American physicist Richard Feynman went further: he claimed that nobody understands it. This is quantum theory, and this book tells its story. Jim Baggott presents a celebration of this wonderful yet wholly disconcerting theory, with a history told in forty episodes — significant moments of truth or turning points in the theory's development. From its birth in the porcelain furnaces used to study black body radiation in 1900, to the promise of stimulating new quantum phenomena to be revealed by CERN's Large Hadron Collider over a hundred years later, this is the extraordinary story of the quantum world. Oxford Landmark Science books are 'must-read' classics of modern science writing which have crystallized big ideas, and shaped the way we think.
Posted in Science

The Quantum Theory of Light

Author: Rodney Loudon

Publisher: OUP Oxford

ISBN: 9780191589782

Category:

Page: 448

View: 6662

This third edition, like its two predecessors, provides a detailed account of the basic theory needed to understand the properties of light and its interactions with atoms, in particular the many nonclassical effects that have now been observed in quantum-optical experiments. The earlier chapters describe the quantum mechanics of various optical processes, leading from the classical representation of the electromagnetic field to the quantum theory of light. The later chapters develop the theoretical descriptions of some of the key experiments in quantum optics. Over half of the material in this third edition is new. It includes topics that have come into prominence over the last two decades, such as the beamsplitter theory, squeezed light, two-photon interference, balanced homodyne detection, travelling-wave attenuation and amplification, quantum jumps, and the ranges of nonliner optical processes important in the generation of nonclassical light. The book is written as a textbook, with the treatment as a whole appropriate for graduate or postgraduate students, while earlier chapters are also suitable for final- year undergraduates. Over 100 problems help to intensify the understanding of the material presented.
Posted in

Schrödinger's Rabbits

The Many Worlds of Quantum

Author: Colin Bruce

Publisher: Joseph Henry Press

ISBN: 9780309166027

Category: Science

Page: 282

View: 8626

For the better part of a century, attempts to explain what was really going on in the quantum world seemed doomed to failure. But recent technological advances have made the question both practical and urgent. A brilliantly imaginative group of physicists at Oxford University have risen to the challenge. This is their story. At long last, there is a sensible way to think about quantum mechanics. The new view abolishes the need to believe in randomness, long-range spooky forces, or conscious observers with mysterious powers to collapse cats into a state of life or death. But the new understanding comes at a price: we must accept that we live in a multiverse wherein countless versions of reality unfold side-by-side. The philosophical and personal consequences of this are awe-inspiring. The new interpretation has allowed imaginative physicists to conceive of wonderful new technologies: measuring devices that effectively share information between worlds and computers that can borrow the power of other worlds to perform calculations. Step by step, the problems initially associated with the original many-worlds formulation have been addressed and answered so that a clear but startling new picture has emerged. Just as Copenhagen was the centre of quantum discussion a lifetime ago, so Oxford has been the epicenter of the modern debate, with such figures as Roger Penrose and Anton Zeilinger fighting for single-world views, and David Deutsch, Lev Vaidman and a host of others for many-worlds. An independent physicist living in Oxford, Bruce has had a ringside seat to the debate. In his capable hands, we understand why the initially fantastic sounding many-worlds view is not only a useful way to look at things, but logically compelling. Parallel worlds are as real as the distant galaxies detected by the Hubble Space Telescope, even though the evidence for their existence may consist only of a few photons.
Posted in Science

The Theory of the Quantum World

Proceedings of the 25th Solvay Conference on Physics, Brussels, Belgium 19-22 October 2011

Author: David Gross,Marc Henneaux,Alexander Sevrin

Publisher: World Scientific

ISBN: 9814440620

Category: Science

Page: 387

View: 327

Ever since 1911, the Solvay Conferences have shaped modern physics. The 25th edition held in October 2011 in Brussels and chaired by David Gross continued this tradition and celebrated the first centennial of this illustrious series of conferences. The development and applications of quantum mechanics have always been the main threads in the history of the Solvay Conferences, hence the 25th Solvay conference gathered many of the leading figures working on a wide variety of profound problems in physics where quantum mechanical effects play a central role. The conference addressed some of the most pressing open questions in the field of physics.The proceedings contain the OC rapporteur talksOCO which give a broad overview with unique insights by distinguished and renowned scientists. These lectures cover the seven sessions: OC History and ReflectionsOCO, OC Foundations of Quantum Mechanics and Quantum ComputationOCO, OC Control of Quantum SystemsOCO, OC Quantum Condensed MatterOCO, OC Particles and FieldsOCO, OC Quantum Gravity and String TheoryOCO and it ended with a general discussion attempting to arrive at a synthesis.In the Solvay tradition, the proceedings also include the prepared comments to the rapporteur talks. The discussions among the participants OCo some of which quite lively and involving dramatically divergent points of view OCo have been carefully edited and are reproduced in full.
Posted in Science

The Quantum World of Ultra-Cold Atoms and Light Book II: The Physics of Quantum-Optical Devices

Author: Crispin Gardiner,Peter Zoller

Publisher: World Scientific Publishing Company

ISBN: 1783266155

Category: Science

Page: 524

View: 2015

This century has seen the development of technologies for manipulating and controlling matter and light at the level of individual photons and atoms, a realm in which physics is fully quantum-mechanical. The dominant experimental technology is the laser, and the theoretical paradigm is quantum optics. The Quantum World of Ultra-Cold Atoms and Light is a trilogy, which presents the quantum optics way of thinking and its applications to quantum devices. This book — The Physics of Quantum-Optical Devices — provides a comprehensive treatment of theoretical quantum optics. It covers applications to the optical manipulation of the quantum states of atoms, laser cooling, continuous measurement, quantum computers and quantum processors, superconducting systems and quantum networks. The subject is consistently formulated in terms of quantum stochastic techniques, and a systematic and thorough development of these techniques is a central part of the book. There is also a compact overview of the ideas of quantum information theory. The main aim of the book is to present the theoretical techniques necessary for the understanding of quantum optical devices, with special attention to those devices used in quantum information processing and quantum simulation. Although these techniques were developed originally for the optical regime, they are also applicable to electromagnetic radiation from the microwave realm to the ultra-violet, and for atomic systems, Josephson junction systems, quantum dots and nano-mechanical systems. For more information, please visit: http://europe.worldscientific.com/quantum-world-of-ultra-cold-atoms-and-light.html
Posted in Science

Quantum Control and Measurement

Author: H. Ezawa,Y. Murayama

Publisher: Elsevier

ISBN: 0444599150

Category: Science

Page: 342

View: 1463

This book presents the latest results in the most fundamental field of quantum state preparation and control. At this unique conference researchers, both from the academic and industrial world, presented their work. A variety of crucial experiments under controlled, novel conditions, and theoretical checks from novel points of view are reported. Highlighted are new schemes for quantum interference, single particle behaviour, gravitational waves, electron holography and semiconductor microlasers. Containing all the recent results available in the field, this volume points the direction for further experimental and theoretical work in the foundations of physics.
Posted in Science

The Big Picture

Author: Sean Carroll

Publisher: Oneworld Publications

ISBN: 1780746075

Category: Science

Page: 464

View: 7717

Where are we? Who are we? Do our beliefs, hopes and dreams mean anything out there in the void? Can human purpose and meaning ever fit into a scientific worldview? Acclaimed award-winning author Sean Carroll brings his extraordinary intellect to bear on the realms of knowledge, the laws of nature and the most profound questions about life, death and our place in it all. In a dazzlingly unique presentation, Carroll takes us through the scientific revolution’s avalanche of discoveries, from Darwin and Einstein to the origins of life, consciousness and the universe itself. Delving into the way the world works at the quantum, cosmic and human levels, he reveals how human values relate to scientific reality. An extraordinary synthesis of cosmos-sprawling science and profound thought, The Big Picture is Carroll’s quest to explain our world. Destined to sit alongside the works of our greatest thinkers, from Stephen Hawking and Carl Sagan to Daniel Dennett and E. O. Wilson, this book shows that while our lives may be forever dwarfed by the immensity of the universe, they can be redeemed by our capacity to comprehend it and give it meaning.
Posted in Science

Science at the Frontier

Author: Addison Greenwood,National Academy of Sciences

Publisher: National Academies Press

ISBN: 0309560284

Category: Science

Page: 255

View: 8976

Science at the Frontier takes you on a journey through the minds of some of the nation's leading young scientists as they explore the most exciting areas of discovery today. Based on the second Frontiers of Science symposium sponsored by the National Academy of Sciences, this book describes recent accomplishments and new directions in ten basic fields, represented by outstanding scientists convening to discuss their research. It captures the excitement and personal quality of these exchanges, sometimes pointing to surprising connections spanning the boundaries of traditional disciplines, while providing a context for the reader that explains the basic scientific framework for the fields under discussion. The volume explores New modifications to scientific theory as geologists probe deep inside the earth and astrophysicists reach to the limits of the observable universe for answers to some of nature's most fundamental and vexing questions. The influence of research in smog formation on the public debate about how to effectively control air pollution. The increasing use of computer modeling in science, from describing the evolution of cellular automata to revealing the workings of the human brain via neural networks. The rise of dynamical systems (the study of chaotic behavior in nature) to a full-fledged science. The search to understand the regulation of gene activity and the many biological problems--such as the onset of cancer--to which it applies. Recent progress in the quest to transform what we know about photosynthesis into functional, efficient systems to tap the sun's energy. Current developments in magnetic resonance imaging and its promise for new breakthroughs in medical diagnosis. Throughout this work the reader is witness to scientific discovery and debate centered on such common concerns as the dramatic and transforming effect of computers on scientists' thinking and research; the development of more cross-disciplinary perspectives; and the very nature of the scientific enterprise itself--what it is to be part of it, and its significance for society. Science at the Frontier is must reading for informed lay readers, scientists interested in fields other than their own, and science students considering a future specialization.
Posted in Science

Quantum Control

Mathematical and Numerical Challenges : CRM Workshop, October 6-11, 2002, Montréal, Canada

Author: André D. Bandrauk,Michel C. Delfour,Claude Le Bris

Publisher: American Mathematical Soc.

ISBN: 9780821833308

Category: Science

Page: 211

View: 8344

It brought together mathematicians, theoretical chemists, and physicists working in the area of control and optimization of systems to address the outstanding numerical and mathematical problems."
Posted in Science

Principles of the Quantum Control of Molecular Processes

Author: Moshe Shapiro,Paul Brumer

Publisher: N.A

ISBN: 9780471241843

Category: Science

Page: 354

View: 6770

Principles and Applications of Quantum Contro Over the past fifteen years, significant developments have been made in utilizing quantum attributes of light and matter to assume unprecedented control over the dynamics of atomic and molecular systems. This growth reflects a confluence of factors including the maturation of quantum mechanics as a tool for chemistry and physics, the development of new laser devices increasing our ability to manipulate light, and the recognition that coherent laser light can be used to imprint information on atoms and molecules for practical purposes. Written by two of the world’s leading researchers in the field, Principles of the Quantum Control of Molecular Processes offers a systematic introduction to the fundamental principles of coherent control, and to the physics and chemistry necessary to master it Designed as both a resource for self-study and as a graduate textbook, this survey of the subject provides a step-by-step discussion of light-matter interactions along with coverage of such essential topics as: Molecular dynamics and control LI>The dynamics of photodissociation LI>Bimolecular collision processes LI>The control of chirality and asymmetric synthesis LI>Application of control using moderate and strong fields LI>Tuning the system and laser parameters to achieve optimal control LI>Decoherence and methods for countering it P>Both authoritative and comprehensive, this first in-depth treatment of coherent control is destined to become the standard reference in an increasingly influential field PAUL W. BRUMER, PhD, is University Professor–Theoretical Chemical Physics and holds the Roel Buck Chair in Chemical Physics at the University of Toronto. He received his BSc. from Brooklyn College and his PhD from Harvard University. MOSHE SHAPIRO, PhD, is the Jacques Mimran Professor of Chemical Physics at the Weizmann Institute of Science, Rehovot, Israel, and a Professor of Chemistry and Physics at the University of British Columbia. He received his BSc, MSc, and PhD from the Hebrew University of Jerusalem The authors are among the cofounders of the field of coherent control. They have published extensively on this and related subjects in chemical physics, and have received numerous awards and worldwide recognition for their research contributions.
Posted in Science

Condensed-Matter and Materials Physics:

Basic Research for Tomorrow's Technology

Author: Committee on Condensed-Matter and Materials Physics,National Research Council,Division on Engineering and Physical Sciences,Board on Physics and Astronomy

Publisher: National Academies Press

ISBN: 0309063493

Category: Technology & Engineering

Page: 324

View: 3982

This book identifies opportunities, priorities, and challenges for the field of condensed-matter and materials physics. It highlights exciting recent scientific and technological developments and their societal impact and identifies outstanding questions for future research. Topics range from the science of modern technology to new materials and structures, novel quantum phenomena, nonequilibrium physics, soft condensed matter, and new experimental and computational tools. The book also addresses structural challenges for the field, including nurturing its intellectual vitality, maintaining a healthy mixture of large and small research facilities, improving the field's integration with other disciplines, and developing new ways for scientists in academia, government laboratories, and industry to work together. It will be of interest to scientists, educators, students, and policymakers.
Posted in Technology & Engineering

The Quantum World

The Disturbing Theory at the Heart of Reality

Author: New Scientist

Publisher: Nicholas Brealey

ISBN: 185788969X

Category: Science

Page: 228

View: 599

Quantum theory is our very best description of the microscopic world of atoms and their constituents. It has given us lasers, computers and nuclear reactors, and even tells us how the sun shines and why the ground beneath our feet is solid. Yet the quantum world defies our sensibilities - it is a place where objects can be in two places at once, influence each other at opposite sides of the cosmos and nothing is as it seems until you measure it. Why is the quantum world so strange? Where does it begin and end? And what does this mean for the bedrock of reality? In attempting to address such frontier questions, physicists have come to realise that the quantum world promises exciting new technologies: the ability to communicate with absolute security, computers more powerful than anything built before and even quantum teleportation. In The Quantum World, leading physicists and New Scientist take us on journey through the quantum world, its mind-bending properties and the technologies transforming our world. There is a sting in the tale: is quantum theory truly the ultimate theory of reality?
Posted in Science