*The Theory of Functions and Sets of Natural Numbers*

Author: P. Odifreddi

Publisher: Elsevier

ISBN: 9780080886596

Category: Computers

Page: 667

View: 4389

Skip to content
#
Search Results for: classical-recursion-theory-the-theory-of-functions-and-sets-of-natural-numbers-studies-in-logic-and-the-foundations-of-mathematics

## Classical Recursion Theory

1988 marked the first centenary of Recursion Theory, since Dedekind's 1888 paper on the nature of number. Now available in paperback, this book is both a comprehensive reference for the subject and a textbook starting from first principles. Among the subjects covered are: various equivalent approaches to effective computability and their relations with computers and programming languages; a discussion of Church's thesis; a modern solution to Post's problem; global properties of Turing degrees; and a complete algebraic characterization of many-one degrees. Included are a number of applications to logic (in particular Gödel's theorems) and to computer science, for which Recursion Theory provides the theoretical foundation.
## Classical recursion theory

Volume II of Classical Recursion Theory describes the universe from a local (bottom-up or synthetical) point of view, and covers the whole spectrum, from the recursive to the arithmetical sets. The first half of the book provides a detailed picture of the computable sets from the perspective of Theoretical Computer Science. Besides giving a detailed description of the theories of abstract Complexity Theory and of Inductive Inference, it contributes a uniform picture of the most basic complexity classes, ranging from small time and space bounds to the elementary functions, with a particular attention to polynomial time and space computability. It also deals with primitive recursive functions and larger classes, which are of interest to the proof theorist. The second half of the book starts with the classical theory of recursively enumerable sets and degrees, which constitutes the core of Recursion or Computability Theory. Unlike other texts, usually confined to the Turing degrees, the book covers a variety of other strong reducibilities, studying both their individual structures and their mutual relationships. The last chapters extend the theory to limit sets and arithmetical sets. The volume ends with the first textbook treatment of the enumeration degrees, which admit a number of applications from algebra to the Lambda Calculus. The book is a valuable source of information for anyone interested in Complexity and Computability Theory. The student will appreciate the detailed but informal account of a wide variety of basic topics, while the specialist will find a wealth of material sketched in exercises and asides. A massive bibliography of more than a thousand titles completes the treatment on the historical side.
## Proceedings of the 12th Asian Logic Conference

The Asian Logic Conference is the most significant logic meeting outside of North America and Europe, and this volume represents work presented at, and arising from the 12th meeting. It collects a number of interesting papers from experts in the field. It covers many areas of logic. Contents:Resolute Sequences in Initial Segment Complexity (G Barmpalias and R G Downey)Approximating Functions and Measuring Distance on a Graph (W Calvert, R Miller and J Chubb Reimann)Carnap and McKinsey: Topics in the Pre-History of Possible-Worlds Semantics (M J Cresswell)Limits to Joining with Generics and Randoms (A R Day and D D Dzhafarov)Freedom & Consistency (M Detlefsen)A van Lambalgen Theorem for Demuth Randomness (D Diamondstone, N Greenberg and D Turetsky)Faithful Representations of Polishable Ideals (S Gao)Further Thoughts on Definability in the Urysohn Sphere (I Goldbring)Simple Completeness Proofs for Some Spatial Logics of the Real Line (I Hodkinson)On a Question of Csima on Computation-Time Domination (X Hua, J Liu and G Wu)A Generalization of Beth Model to Functionals of High Types (F Kachapova)A Computational Framework for the Study of Partition Functions and Graph Polynomials (T Kotek, J A Makowsky and E V Ravve)Relation Algebras and R (T Kowalski)Van Lambalgen's Theorem for Uniformly Relative Schnorr and Computable Randomness (K Miyabe and J Rute)Computational Aspects of the Hyperimmune-Free Degrees (K M Ng, F Stephan, Y Yang and L Yu)Calibrating the Complexity of Δ02 Sets via Their Changes (A Nies)Topological Full Groups of Minimal Subshifts and Just-Infnite Groups (S Thomas)TW-Models for Logic of Knowledge-cum-Belief (S C-M Yang) Readership: Researchers in mathematical logic and algebra, computer scientists in artificial intelligence and fuzzy logic. Keywords:Asian Logic Conference;Logic;Computability;Set Theory;Modal Logic
## Turing Computability

Turing's famous 1936 paper introduced a formal definition of a computing machine, a Turing machine. This model led to both the development of actual computers and to computability theory, the study of what machines can and cannot compute. This book presents classical computability theory from Turing and Post to current results and methods, and their use in studying the information content of algebraic structures, models, and their relation to Peano arithmetic. The author presents the subject as an art to be practiced, and an art in the aesthetic sense of inherent beauty which all mathematicians recognize in their subject. Part I gives a thorough development of the foundations of computability, from the definition of Turing machines up to finite injury priority arguments. Key topics include relative computability, and computably enumerable sets, those which can be effectively listed but not necessarily effectively decided, such as the theorems of Peano arithmetic. Part II includes the study of computably open and closed sets of reals and basis and nonbasis theorems for effectively closed sets. Part III covers minimal Turing degrees. Part IV is an introduction to games and their use in proving theorems. Finally, Part V offers a short history of computability theory. The author has honed the content over decades according to feedback from students, lecturers, and researchers around the world. Most chapters include exercises, and the material is carefully structured according to importance and difficulty. The book is suitable for advanced undergraduate and graduate students in computer science and mathematics and researchers engaged with computability and mathematical logic.
## Logic from Russell to Church

This volume is number five in the 11-volume Handbook of the History of Logic. It covers the first 50 years of the development of mathematical logic in the 20th century, and concentrates on the achievements of the great names of the period--Russell, Post, Gödel, Tarski, Church, and the like. This was the period in which mathematical logic gave mature expression to its four main parts: set theory, model theory, proof theory and recursion theory. Collectively, this work ranks as one of the greatest achievements of our intellectual history. Written by leading researchers in the field, both this volume and the Handbook as a whole are definitive reference tools for senior undergraduates, graduate students and researchers in the history of logic, the history of philosophy, and any discipline, such as mathematics, computer science, and artificial intelligence, for whom the historical background of his or her work is a salient consideration. • The entire range of modal logic is covered • Serves as a singular contribution to the intellectual history of the 20th century • Contains the latest scholarly discoveries and interpretative insights
## Computability Theory

What can we compute--even with unlimited resources? Is everything within reach? Or are computations necessarily drastically limited, not just in practice, but theoretically? These questions are at the heart of computability theory. The goal of this book is to give the reader a firm grounding in the fundamentals of computability theory and an overview of currently active areas of research, such as reverse mathematics and algorithmic randomness. Turing machines and partial recursive functions are explored in detail, and vital tools and concepts including coding, uniformity, and diagonalization are described explicitly. From there the material continues with universal machines, the halting problem, parametrization and the recursion theorem, and thence to computability for sets, enumerability, and Turing reduction and degrees. A few more advanced topics round out the book before the chapter on areas of research. The text is designed to be self-contained, with an entire chapter of preliminary material including relations, recursion, induction, and logical and set notation and operators. That background, along with ample explanation, examples, exercises, and suggestions for further reading, make this book ideal for independent study or courses with few prerequisites.
## Logic, Computation, Hierarchies

Published in honor of Victor L. Selivanov, the 17 articles collected in this volume inform on the latest developments in computability theory and its applications in computable analysis; descriptive set theory and topology; and the theory of omega-languages; as well as non-classical logics, such as temporal logic and paraconsistent logic. This volume will be of interest to mathematicians and logicians, as well as theoretical computer scientists.
## Notices of the American Mathematical Society

## The Bulletin of Symbolic Logic

## The Foundations of Computability Theory

This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism; in Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability; in Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science.
## Relative Randomness Via RK-reducibility

## Principia Mathematica.

## Mathematics — The Music of Reason

This book is of interest for students of mathematics or of neighboring subjects like physics, engineering, computer science, and also for people who have at least school level mathematics and have kept some interest in it. Also good for younger readers just reaching their final school year of mathematics.
## Classical Mathematical Logic

In Classical Mathematical Logic, Richard L. Epstein relates the systems of mathematical logic to their original motivations to formalize reasoning in mathematics. The book also shows how mathematical logic can be used to formalize particular systems of mathematics. It sets out the formalization not only of arithmetic, but also of group theory, field theory, and linear orderings. These lead to the formalization of the real numbers and Euclidean plane geometry. The scope and limitations of modern logic are made clear in these formalizations. The book provides detailed explanations of all proofs and the insights behind the proofs, as well as detailed and nontrivial examples and problems. The book has more than 550 exercises. It can be used in advanced undergraduate or graduate courses and for self-study and reference. Classical Mathematical Logic presents a unified treatment of material that until now has been available only by consulting many different books and research articles, written with various notation systems and axiomatizations.
## Logicism, Intuitionism, and Formalism

This anthology reviews the programmes in the foundations of mathematics from the classical period and assesses their possible relevance for contemporary philosophy of mathematics. A special section is concerned with constructive mathematics.
## Apartness and Uniformity

The theory presented in this book is developed constructively, is based on a few axioms encapsulating the notion of objects (points and sets) being apart, and encompasses both point-set topology and the theory of uniform spaces. While the classical-logic-based theory of proximity spaces provides some guidance for the theory of apartness, the notion of nearness/proximity does not embody enough algorithmic information for a deep constructive development. The use of constructive (intuitionistic) logic in this book requires much more technical ingenuity than one finds in classical proximity theory -- algorithmic information does not come cheaply -- but it often reveals distinctions that are rendered invisible by classical logic. In the first chapter the authors outline informal constructive logic and set theory, and, briefly, the basic notions and notations for metric and topological spaces. In the second they introduce axioms for a point-set apartness and then explore some of the consequences of those axioms. In particular, they examine a natural topology associated with an apartness space, and relations between various types of continuity of mappings. In the third chapter the authors extend the notion of point-set (pre-)apartness axiomatically to one of (pre-)apartness between subsets of an inhabited set. They then provide axioms for a quasiuniform space, perhaps the most important type of set-set apartness space. Quasiuniform spaces play a major role in the remainder of the chapter, which covers such topics as the connection between uniform and strong continuity (arguably the most technically difficult part of the book), apartness and convergence in function spaces, types of completeness, and neat compactness. Each chapter has a Notes section, in which are found comments on the definitions, results, and proofs, as well as occasional pointers to future work. The book ends with a Postlude that refers to other constructive approaches to topology, with emphasis on the relation between apartness spaces and formal topology. Largely an exposition of the authors' own research, this is the first book dealing with the apartness approach to constructive topology, and is a valuable addition to the literature on constructive mathematics and on topology in computer science. It is aimed at graduate students and advanced researchers in theoretical computer science, mathematics, and logic who are interested in constructive/algorithmic aspects of topology.
## A Mathematical Prelude to the Philosophy of Mathematics

This book is based on two premises: one cannot understand philosophy of mathematics without understanding mathematics and one cannot understand mathematics without doing mathematics. It draws readers into philosophy of mathematics by having them do mathematics. It offers 298 exercises, covering philosophically important material, presented in a philosophically informed way. The exercises give readers opportunities to recreate some mathematics that will illuminate important readings in philosophy of mathematics. Topics include primitive recursive arithmetic, Peano arithmetic, Gödel's theorems, interpretability, the hierarchy of sets, Frege arithmetic and intuitionist sentential logic. The book is intended for readers who understand basic properties of the natural and real numbers and have some background in formal logic.
## Mathematical Logic

Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. This book shows how it can also provide a foundation for the development of information science and technology. The first five chapters systematically present the core topics of classical mathematical logic, including the syntax and models of first-order languages, formal inference systems, computability and representability, and Gödel’s theorems. The last five chapters present extensions and developments of classical mathematical logic, particularly the concepts of version sequences of formal theories and their limits, the system of revision calculus, proschemes (formal descriptions of proof methods and strategies) and their properties, and the theory of inductive inference. All of these themes contribute to a formal theory of axiomatization and its application to the process of developing information technology and scientific theories. The book also describes the paradigm of three kinds of language environments for theories and it presents the basic properties required of a meta-language environment. Finally, the book brings these themes together by describing a workflow for scientific research in the information era in which formal methods, interactive software and human invention are all used to their advantage. The second edition of the book includes major revisions on the proof of the completeness theorem of the Gentzen system and new contents on the logic of scientific discovery, R-calculus without cut, and the operational semantics of program debugging. This book represents a valuable reference for graduate and undergraduate students and researchers in mathematics, information science and technology, and other relevant areas of natural sciences. Its first five chapters serve as an undergraduate text in mathematical logic and the last five chapters are addressed to graduate students in relevant disciplines.
## Logic for Applications

In writing this book, our goal was to produce a text suitable for a first course in mathematical logic more attuned than the traditional textbooks to the re cent dramatic growth in the applications oflogic to computer science. Thus, our choice oftopics has been heavily influenced by such applications. Of course, we cover the basic traditional topics: syntax, semantics, soundnes5, completeness and compactness as well as a few more advanced results such as the theorems of Skolem-Lowenheim and Herbrand. Much ofour book, however, deals with other less traditional topics. Resolution theorem proving plays a major role in our treatment of logic especially in its application to Logic Programming and PRO LOG. We deal extensively with the mathematical foundations ofall three ofthese subjects. In addition, we include two chapters on nonclassical logics - modal and intuitionistic - that are becoming increasingly important in computer sci ence. We develop the basic material on the syntax and semantics (via Kripke frames) for each of these logics. In both cases, our approach to formal proofs, soundness and completeness uses modifications of the same tableau method in troduced for classical logic. We indicate how it can easily be adapted to various other special types of modal logics. A number of more advanced topics (includ ing nonmonotonic logic) are also briefly introduced both in the nonclassical logic chapters and in the material on Logic Programming and PROLOG.
## Set Theoretical Aspects of Real Analysis

Set Theoretical Aspects of Real Analysis is built around a number of questions in real analysis and classical measure theory, which are of a set theoretic flavor. Accessible to graduate students, and researchers the beginning of the book presents introductory topics on real analysis and Lebesgue measure theory. These topics highlight the boundary between fundamental concepts of measurability and nonmeasurability for point sets and functions. The remainder of the book deals with more specialized material on set theoretical real analysis. The book focuses on certain logical and set theoretical aspects of real analysis. It is expected that the first eleven chapters can be used in a course on Lebesque measure theory that highlights the fundamental concepts of measurability and non-measurability for point sets and functions. Provided in the book are problems of varying difficulty that range from simple observations to advanced results. Relatively difficult exercises are marked by asterisks and hints are included with additional explanation. Five appendices are included to supply additional background information that can be read alongside, before, or after the chapters. Dealing with classical concepts, the book highlights material not often found in analysis courses. It lays out, in a logical, systematic manner, the foundations of set theory providing a readable treatment accessible to graduate students and researchers.

Full PDF eBook Download Free

*The Theory of Functions and Sets of Natural Numbers*

Author: P. Odifreddi

Publisher: Elsevier

ISBN: 9780080886596

Category: Computers

Page: 667

View: 4389

Author: Piergiorgio Odifreddi

Publisher: North Holland

ISBN: 9780444502056

Category: Computers

Page: 949

View: 5373

Author: Rod Downey,Jörg Brendle,Robert Goldblatt,Byunghan Kim

Publisher: World Scientific

ISBN: 9814449288

Category: Mathematics

Page: 348

View: 2700

*Theory and Applications*

Author: Robert I. Soare

Publisher: Springer

ISBN: 3642319335

Category: Computers

Page: 263

View: 6360

Author: Dov M. Gabbay,John Woods

Publisher: Elsevier

ISBN: 0080885470

Category: Mathematics

Page: 1068

View: 5164

Author: Rebecca Weber

Publisher: American Mathematical Soc.

ISBN: 082187392X

Category: Mathematics

Page: 203

View: 1139

Author: Vasco Brattka,Hannes Diener,Dieter Spreen

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 1614519404

Category: Philosophy

Page: 424

View: 6646

Author: American Mathematical Society

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 5930

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Electronic journals

Page: N.A

View: 7913

Author: Borut Robič

Publisher: Springer

ISBN: 3662448084

Category: Computers

Page: 331

View: 8584

Author: Alexander Raichev

Publisher: N.A

ISBN: N.A

Category:

Page: 69

View: 7976

Author: Alfred North Whitehead,Bertrand Russell

Publisher: N.A

ISBN: N.A

Category: Logic, Symbolic and mathematical

Page: 167

View: 6106

Author: Jean Dieudonne

Publisher: Springer Science & Business Media

ISBN: 9783540533467

Category: Mathematics

Page: 287

View: 9695

*The Semantic Foundations of Logic*

Author: Richard L. Epstein

Publisher: Princeton University Press

ISBN: 1400841550

Category: Mathematics

Page: 544

View: 5536

*What Has Become of Them?*

Author: Sten Lindström,Erik Palmgren,Krister Segerberg,Viggo Stoltenberg-Hansen

Publisher: Springer Science & Business Media

ISBN: 1402089260

Category: Mathematics

Page: 512

View: 7656

*A Constructive Development*

Author: Douglas S. Bridges,Luminiţa Simona Vîţă

Publisher: Springer Science & Business Media

ISBN: 3642224156

Category: Computers

Page: 198

View: 5182

Author: Stephen Pollard

Publisher: Springer

ISBN: 3319058169

Category: Science

Page: 202

View: 3255

*Foundations for Information Science*

Author: Wei Li

Publisher: Springer

ISBN: 3034808623

Category: Mathematics

Page: 301

View: 5404

Author: Anil Nerode,Richard Shore

Publisher: Springer Science & Business Media

ISBN: 9780387948935

Category: Computers

Page: 456

View: 3145

Author: Alexander B. Kharazishvili

Publisher: CRC Press

ISBN: 148224201X

Category: Mathematics

Page: 456

View: 3005