Categorical Data Analysis

Author: Alan Agresti

Publisher: John Wiley & Sons

ISBN: 0471458767

Category: Mathematics

Page: 734

View: 5421

Amstat News asked three review editors to rate their topfive favorite books in the September 2003 issue. CategoricalData Analysis was among those chosen. A valuable new edition of a standard reference "A 'must-have' book for anyone expecting to do research and/orapplications in categorical data analysis." –Statistics in Medicine on Categorical Data Analysis,First Edition The use of statistical methods for categorical data hasincreased dramatically, particularly for applications in thebiomedical and social sciences. Responding to new developments inthe field as well as to the needs of a new generation ofprofessionals and students, this new edition of the classicCategorical Data Analysis offers a comprehensiveintroduction to the most important methods for categorical dataanalysis. Designed for statisticians and biostatisticians as well asscientists and graduate students practicing statistics,Categorical Data Analysis, Second Edition summarizes thelatest methods for univariate and correlated multivariatecategorical responses. Readers will find a unified generalizedlinear models approach that connects logistic regression andPoisson and negative binomial regression for discrete data withnormal regression for continuous data. Adding to the value in thenew edition is coverage of: Three new chapters on methods for repeated measurement andother forms of clustered categorical data, including marginalmodels and associated generalized estimating equations (GEE)methods, and mixed models with random effects Stronger emphasis on logistic regression modeling of binaryand multicategory data An appendix showing the use of SAS for conducting nearly allanalyses in the book Prescriptions for how ordinal variables should be treateddifferently than nominal variables Discussion of exact small-sample procedures More than 100 analyses of real data sets to illustrateapplication of the methods, and more than 600 exercises An Instructor's Manual presenting detailed solutions to allthe problems in the book is available from the Wiley editorialdepartment.
Posted in Mathematics

Analysis of Ordinal Categorical Data

Author: Alan Agresti

Publisher: John Wiley & Sons

ISBN: 1118209990

Category: Mathematics

Page: 424

View: 2310

Statistical science’s first coordinated manual of methods for analyzing ordered categorical data, now fully revised and updated, continues to present applications and case studies in fields as diverse as sociology, public health, ecology, marketing, and pharmacy. Analysis of Ordinal Categorical Data, Second Edition provides an introduction to basic descriptive and inferential methods for categorical data, giving thorough coverage of new developments and recent methods. Special emphasis is placed on interpretation and application of methods including an integrated comparison of the available strategies for analyzing ordinal data. Practitioners of statistics in government, industry (particularly pharmaceutical), and academia will want this new edition.
Posted in Mathematics

Applied Categorical Data Analysis and Translational Research

Author: Chap T. Le

Publisher: John Wiley & Sons

ISBN: 0470371307

Category: Mathematics

Page: 399

View: 4214

An updated treatment of categorical data analysis in the biomedical sciences that now explores applications to translational research Thoroughly updated with the latest advances in the field, Applied Categorical Data Analysis and Translational Research, Second Edition maintains the accessible style of its predecessor while also exploring the importance of translational research as it relates to basic scientific findings within clinical practice. With its easy–to–follow style, updated coverage of major methodologies, and broadened scope of coverage, this new edition provides an accessible guide to statistical methods involving categorical data and the steps to their application in problem solving in the biomedical sciences. Delving even further into the applied direction, this update offers many real–world examples from biomedicine, epidemiology, and public health along with detailed case studies taken straight from modern research in these fields. Additional features of the Second Edition include: A new chapter on the relationship between translational research and categorical data, focusing on design study, bioassay, and Phase I and Phase II clinical trials A new chapter on categorical data and diagnostic medicine, with coverage of the diagnostic process, prevalence surveys, the ROC function and ROC curve, and important statistical considerations A revised chapter on logistic regression models featuring an updated treatment of simple and multiple regression analysis An added section on quantal bioassays Each chapter features updated and new exercise sets along with numerous graphs that demonstrate the highly visual nature of the topic. A related Web site features the book′s examples as well as additional data sets that can be worked with using SAS® software. The only book of its kind to provide balanced coverage of methods for both categorical data and translational research, Applied Categorical Data Analysis and Translational Research, Second Edition is an excellent book for courses on applied statistics and biostatistics at the upper–undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the biomedical and public health fields.
Posted in Mathematics

Handbook of Experimental Phenomenology

Visual Perception of Shape, Space and Appearance

Author: Liliana Albertazzi

Publisher: John Wiley & Sons

ISBN: 1118329074

Category: Psychology

Page: 560

View: 6566

While the scientific study of vision is well-advanced, a universaltheory of qualitative visual appearances (texture, shape, colourand so on) is still lacking. This interdisciplinary handbookpresents the work of leading researchers around the world who havetaken up the challenge of defining and formalizing the field of‘experimental phenomenology'. Presents and discusses a new perspective in vision science, andformalizes a field of study that will become increasinglysignificant to researchers in visual science and beyond The contributors are outstanding scholars in their fields withimpeccable academic credentials, including Jan J. Koenderink,Irving Biederman, Donald Hoffmann, Steven Zucker and NikosLogothetis Divided into five parts: Linking Psychophysics and Qualities;Qualities in Space, Time and Motion; Appearances; Measurement andQualities; Science and Aesthetics of Appearances Each chapter will have the same structure consisting of: topicoverview; historical roots; debate; new perspective; methods;results and recent developments
Posted in Psychology

Events in Social Networks

A Stochastic Actor-oriented Framework for Dynamic Event Processes in Social Networks

Author: Christoph Stadtfeld

Publisher: KIT Scientific Publishing

ISBN: 3866447922

Category: Social networks

Page: 140

View: 9488

Posted in Social networks

Marketing Research with IBM® SPSS Statistics

A Practical Guide

Author: Karine Charry,Kristof Coussement,Nathalie Demoulin,Nico Heuvinck

Publisher: Routledge

ISBN: 1315525518

Category: Business & Economics

Page: 264

View: 7467

Marketing researchers, companies and business schools need to be able to use statistical procedures correctly and accurately interpret the outputs, yet generally these people are scared off by the statistics behind the different analyses procedures, thus they often rely on external sources to come up with profound answers to the proposed research questions. In an accessible and step by step approach, the authors show readers which procedures to use in which particular situation and how to practically execute them using IBM® SPSS Statistics. IBM® is one of the largest statistical software providers world-wide and their IBM® SPSS Statistics software offers a very user-friendly environment. The program uses a simple drag-and-drop menu interface, which is also suitable for non-experienced programmers. It is widely employed in companies and many business schools also use this software package. This straightforward, pragmatic reference manual will help: professional marketers who use statistical procedures in in IBM® SPSS Statistics; undergraduate and postgraduate students where marketing research and research methodology are taught; all researchers analyzing survey-based data in a wide range of frontier domains like psychology, finance, accountancy, negotiation, communication, sociology, criminology, management, information systems, etc. IBM®'s next-generation business analytic solutions help organizations of all sizes make sense of information in the context of their business. You can uncover insights more quickly and easily from all types of data-even big data-and on multiple platforms and devices. And, with self-service and built-in expertise and intelligence, you have the freedom and confidence to make smarter decisions that better address your business imperatives.
Posted in Business & Economics

Clinical Trials

A Methodologic Perspective

Author: Steven Piantadosi

Publisher: John Wiley & Sons

ISBN: 1118959221

Category: Mathematics

Page: 920

View: 2753

Presents elements of clinical trial methods that are essential in planning, designing, conducting, analyzing, and interpreting clinical trials with the goal of improving the evidence derived from these important studies This Third Edition builds on the text’s reputation as a straightforward, detailed, and authoritative presentation of quantitative methods for clinical trials. Readers will encounter the principles of design for various types of clinical trials, and are then skillfully guided through the complete process of planning the experiment, assembling a study cohort, assessing data, and reporting results. Throughout the process, the author alerts readers to problems that may arise during the course of the trial and provides common sense solutions. All stages of therapeutic development are discussed in detail, and the methods are not restricted to a single clinical application area. The authors bases current revisions and updates on his own experience, classroom instruction, and feedback from teachers and medical and statistical professionals involved in clinical trials. The Third Edition greatly expands its coverage, ranging from statistical principles to new and provocative topics, including alternative medicine and ethics, middle development, comparative studies, and adaptive designs. At the same time, it offers more pragmatic advice for issues such as selecting outcomes, sample size, analysis, reporting, and handling allegations of misconduct. Readers familiar with the First and Second Editions will discover revamped exercise sets; an updated and extensive reference section; new material on endpoints and the developmental pipeline, among others; and revisions of numerous sections. In addition, this book: • Features accessible and broad coverage of statistical design methods—the crucial building blocks of clinical trials and medical research -- now complete with new chapters on overall development, middle development, comparative studies, and adaptive designs • Teaches readers to design clinical trials that produce valid qualitative results backed by rigorous statistical methods • Contains an introduction and summary in each chapter to reinforce key points • Includes discussion questions to stimulate critical thinking and help readers understand how they can apply their newfound knowledge • Provides extensive references to direct readers to the most recent literature, and there are numerous new or revised exercises throughout the book Clinical Trials: A Methodologic Perspective, Third Edition is a textbook accessible to advanced undergraduate students in the quantitative sciences, graduate students in public health and the life sciences, physicians training in clinical research methods, and biostatisticians and epidemiologists. This book is accompanied by downloadable files available below under the DOWNLOADS tab. These files include: MATHEMATICA program – A set of downloadable files that tracks the chapters, containing code pertaining to each. SAS PROGRAMS and DATA FILES used in the book. The following software programs, included in the downloadables, were developed by the author, Steven Piantadosi, M.D., Ph.D: RANDOMIZATION – This program generates treatment assignments for a clinical trial using blocked stratified randomization. CRM – Implements the continual reassessment methods for dose finding clinical trials. OPTIMAL – Calculates two-stage optimal phase II designs using the Simon method. POWER – This is a power and sample size program for clinical trials. Executables for installing these programs can also be found at https://risccweb.csmc.edu/biostats/. Steven Piantadosi, MD, PhD, is the Phase One Foundation Distinguished Chair and Director of the Samuel Oschin Cancer Institute, and Professor of Medicine at Cedars-Sinai Medical Center in Los Angeles, California. Dr. Piantadosi is one of the world’s leading experts in the design and analysis of clinical trials for cancer research. He has taught clinical trials methods extensively in formal courses and short venues. He has advised numerous academic programs and collaborations nationally regarding clinical trial design and conduct, and has served on external advisory boards for the National Institutes of Health and other prominent cancer programs and centers. The author of more than 260 peer-reviewed scientific articles, Dr. Piantadosi has published extensively on research results, clinical applications, and trial methodology. While his papers have contributed to many areas of oncology, he has also collaborated on diverse studies outside oncology including lung disease and degenerative neurological disease.
Posted in Mathematics

Applied Categorical Data Analysis

Author: Chap T. Le

Publisher: Wiley-Interscience

ISBN: 9780471240600

Category: Mathematics

Page: 312

View: 6303

The nonstatistician's quick reference to applied categorical data analysis With a succinct, unified approach to applied categorical data analysis and an emphasis on applications, this book is immensely useful to researchers and students in the biomedical disciplines and to anyone concerned with statistical analysis. This self-contained volume provides up-to-date coverage of all major methodologies in this area of applied statistics and acquaints the reader with statistical thinking as expressed through a variety of modern-day topics and techniques. Applied Categorical Data Analysis introduces a number of new research areas, including the Mantel-Haenszel method, Kappa statistics, ordinal risks, odds ratio estimates, goodness-of-fit, and various regression models for categorical data. Chap T. Le, author of Health and Numbers and Applied Survival Analysis, presents his information in a user-friendly format and an accessible style while purposefully keeping the mathematics to a level appropriate for students in applied fields. Well supplemented with helpful graphs and tables, Applied Categorical Data Analysis: * Covers both basic and advanced topics * Employs many real-life examples from biomedicine, epidemiology, and public health * Presents case studies in meticulous detail * Provides end-of-chapter exercise sets and solutions * Incorporates samples of computer programs (most notably in SAS). Applied Categorical Data Analysis is an important resource for graduate students and professionals who need a compact reference and guide to both the fundamentals and applications of the major methods in the field.
Posted in Mathematics

Bayesian Models for Categorical Data

Author: Peter Congdon

Publisher: John Wiley & Sons

ISBN: 0470092386

Category: Mathematics

Page: 446

View: 7924

The use of Bayesian methods for the analysis of data has grown substantially in areas as diverse as applied statistics, psychology, economics and medical science. Bayesian Methods for Categorical Data sets out to demystify modern Bayesian methods, making them accessible to students and researchers alike. Emphasizing the use of statistical computing and applied data analysis, this book provides a comprehensive introduction to Bayesian methods of categorical outcomes. * Reviews recent Bayesian methodology for categorical outcomes (binary, count and multinomial data). * Considers missing data models techniques and non-standard models (ZIP and negative binomial). * Evaluates time series and spatio-temporal models for discrete data. * Features discussion of univariate and multivariate techniques. * Provides a set of downloadable worked examples with documented WinBUGS code, available from an ftp site. The author's previous 2 bestselling titles provided a comprehensive introduction to the theory and application of Bayesian models. Bayesian Models for Categorical Data continues to build upon this foundation by developing their application to categorical, or discrete data - one of the most common types of data available. The author's clear and logical approach makes the book accessible to a wide range of students and practitioners, including those dealing with categorical data in medicine, sociology, psychology and epidemiology.
Posted in Mathematics

An Introduction to Categorical Data Analysis

Author: Alan Agresti

Publisher: Wiley-Interscience

ISBN: 9780471113386

Category: Mathematics

Page: 312

View: 6580

Concise, complete, nontechnical; the ideal introduction to an increasingly important topic In recent years, the use of statistical methods for categorical data has increased dramatically in a variety of areas and applications. This book provides an applied introduction to the most important methods for analyzing categorical data. It summarizes methods that have long played a prominent role, such as chi-squared tests, but places special emphasis on logistic regression and loglinear modeling techniques. Special features of the book include: Emphasis on logistic regression modeling of binary data and Poisson regression modeling of count data A unified perspective, based on generalized linear models, that connects these methods with standard regression methods for normally-distributed data An appendix showing the use of a new SAS procedure (GENMOD) for generalized linear modeling that can conduct nearly all methods presented in the book An entertaining historical perspective of the development of the methods Specialized methods for ordinal data, small samples, multicategory data, and matched pairs More than 100 examples of real data sets and more than 200 exercises Writing in an applied, nontechnical style, Alan Agresti illustrates methods using a wide variety of real data, including alcohol, cigarette, and marijuana use by teenagers; AZT use and delay of AIDS; space shuttle launches and O-ring failure; passive smoking and lung cancer; and much more. An Introduction to Categorical Data Analysis is an invaluable tool for social, behavioral, and biomedical scientists, as well as researchers in public health, marketing, education, biological and agricultural sciences, and industrial quality control. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Posted in Mathematics

Foundations of Linear and Generalized Linear Models

Author: Alan Agresti

Publisher: John Wiley & Sons

ISBN: 1118730038

Category: Mathematics

Page: 444

View: 7028

"This book presents an overview of the foundations and the key ideas and results of linear and generalized linear models under one cover. Written by a prolific academic, researcher, and textbook writer, Foundations of Linear and Generalized Linear Modelsis soon to become the gold standard by which all existing textbooks on the topic will be compared. While the emphasis is clearly and succinctly on theoretical underpinnings, applications in "R" are presented when they help to elucidate the content or promote practical model building. Each chapter contains approximately 15-20 exercises, primarily for readers to practice and extend the theory, but, also to assimilate the ideas by doing some data analysis. The carefully crafted models and examples convey basic concepts and do not get mired down in non-trivial considerations. An author-maintained web site includes, among other numerous pedagogical supplements, analyses that parallel the "R" routines from the book in SAS, SPSS and Stata"--
Posted in Mathematics

Applied Mixed Models in Medicine

Author: Helen Brown,Robin Prescott

Publisher: John Wiley & Sons

ISBN: 1118778243

Category: Medical

Page: 536

View: 1035

A fully updated edition of this key text on mixed models,focusing on applications in medical research The application of mixed models is an increasingly popular wayof analysing medical data, particularly in the pharmaceuticalindustry. A mixed model allows the incorporation of both fixed andrandom variables within a statistical analysis, enabling efficientinferences and more information to be gained from the data. Therehave been many recent advances in mixed modelling, particularlyregarding the software and applications. This third edition ofBrown and Prescott’s groundbreaking text provides an updateon the latest developments, and includes guidance on the use ofcurrent SAS techniques across a wide range of applications. Presents an overview of the theory and applications of mixedmodels in medical research, including the latest developments andnew sections on incomplete block designs and the analysis ofbilateral data. Easily accessible to practitioners in any area where mixedmodels are used, including medical statisticians andeconomists. Includes numerous examples using real data from medical andhealth research, and epidemiology, illustrated with SAS code andoutput. Features the new version of SAS, including new graphics formodel diagnostics and the procedure PROC MCMC. Supported by a website featuring computer code, data sets, andfurther material. This third edition will appeal to applied statisticians workingin medical research and the pharmaceutical industry, as well asteachers and students of statistics courses in mixed models. Thebook will also be of great value to a broad range of scientists,particularly those working in the medical and pharmaceuticalareas.
Posted in Medical

Practitioner's Guide to Legal Issues in Organizations

Author: Chester Hanvey,Kayo Sady

Publisher: Springer

ISBN: 3319111434

Category: Psychology

Page: 325

View: 646

This highly useful reference outlines best practices in key areas of human resources that are not only fair and equitable, but that can withstand legal scrutiny. Industrial/organizational experts apply their empirical knowledge and practical experience to aspects of HR that are commonly litigated, including broad and specific topics in testing of potential employees, disability issues, compensation and pay equity, and work hours. The book is written to be accessible to readers currently in HR-related graduate-level training as well as HR practitioners with or without background in industrial/organizational psychology. And to add to its utility, chapters feature practical strategies for addressing each of the legal issues presented. Among the topics covered: Measuring adverse impact in employee selection decisions. Using background checks in the employee selection process. Disabilities: best practices for vulnerabilities associated with the ADA. Physical abilities testing. Wage and hour litigation. Clinical psychological testing for employee selection. Conducting compensation equity analyses. Practitioner’s Guide to Legal Issues in Organizations brings clear, up-to-date information to graduate students studying human resources, management, industrial/organizational psychology who are interested in legal issues, as well as applied HR practitioners such as industrial/organizational psychologists, human resources generalists, management and labor economists.
Posted in Psychology

Longitudinal Categorical Data Analysis

Author: Brajendra C. Sutradhar

Publisher: Springer

ISBN: 1493921371

Category: Mathematics

Page: 369

View: 8180

This is the first book in longitudinal categorical data analysis with parametric correlation models developed based on dynamic relationships among repeated categorical responses. This book is a natural generalization of the longitudinal binary data analysis to the multinomial data setup with more than two categories. Thus, unlike the existing books on cross-sectional categorical data analysis using log linear models, this book uses multinomial probability models both in cross-sectional and longitudinal setups. A theoretical foundation is provided for the analysis of univariate multinomial responses, by developing models systematically for the cases with no covariates as well as categorical covariates, both in cross-sectional and longitudinal setups. In the longitudinal setup, both stationary and non-stationary covariates are considered. These models have also been extended to the bivariate multinomial setup along with suitable covariates. For the inferences, the book uses the generalized quasi-likelihood as well as the exact likelihood approaches. The book is technically rigorous, and, it also presents illustrations of the statistical analysis of various real life data involving univariate multinomial responses both in cross-sectional and longitudinal setups. This book is written mainly for the graduate students and researchers in statistics and social sciences, among other applied statistics research areas. However, the rest of the book, specifically the chapters from 1 to 3, may also be used for a senior undergraduate course in statistics.
Posted in Mathematics

Applied Linear Regression

Author: Sanford Weisberg

Publisher: John Wiley & Sons

ISBN: 0471704083

Category: Mathematics

Page: 352

View: 8414

Posted in Mathematics

The R Software

Fundamentals of Programming and Statistical Analysis

Author: Pierre Lafaye de Micheaux,Rémy Drouilhet,Benoit Liquet

Publisher: Springer Science & Business

ISBN: 1461490200

Category: Computers

Page: 628

View: 1745

The contents of The R Software are presented so as to be both comprehensive and easy for the reader to use. Besides its application as a self-learning text, this book can support lectures on R at any level from beginner to advanced. This book can serve as a textbook on R for beginners as well as more advanced users, working on Windows, MacOs or Linux OSes. The first part of the book deals with the heart of the R language and its fundamental concepts, including data organization, import and export, various manipulations, documentation, plots, programming and maintenance. The last chapter in this part deals with oriented object programming as well as interfacing R with C/C++ or Fortran, and contains a section on debugging techniques. This is followed by the second part of the book, which provides detailed explanations on how to perform many standard statistical analyses, mainly in the Biostatistics field. Topics from mathematical and statistical settings that are included are matrix operations, integration, optimization, descriptive statistics, simulations, confidence intervals and hypothesis testing, simple and multiple linear regression, and analysis of variance. Each statistical chapter in the second part relies on one or more real biomedical data sets, kindly made available by the Bordeaux School of Public Health (Institut de Santé Publique, d'Épidémiologie et de Développement - ISPED) and described at the beginning of the book. Each chapter ends with an assessment section: memorandum of most important terms, followed by a section of theoretical exercises (to be done on paper), which can be used as questions for a test. Moreover, worksheets enable the reader to check his new abilities in R. Solutions to all exercises and worksheets are included in this book.
Posted in Computers

Eine Art Leben

Author: Graham Greene

Publisher: N.A

ISBN: 9783552053113

Category:

Page: 223

View: 8557

Posted in

Statistical Analysis of Categorical Data

Author: Chris J. Lloyd

Publisher: Wiley-Interscience

ISBN: N.A

Category: Mathematics

Page: 488

View: 1225

Accessible, up-to-date coverage of a broad range of modern and traditional methods. The ability to understand and analyze categorical, or count, data is crucial to the success of statisticians in a wide variety of fields, including biomedicine, ecology, the social sciences, marketing, and many more. Statistical Analysis of Categorical Data provides thorough, clear, up-to-date explanations of all important methods of categorical data analysis at a level accessible to anyone with a solid undergraduate knowledge of statistics. Featuring a liberal use of real-world examples as well as a regression-based approach familiar to most students, this book reviews pertinent statistical theory, including advanced topics such as Score statistics and the transformed central limit theorem. It presents the distribution theory of Poisson as well as multinomial variables, and it points out the connections between them. Complete with numerous illustrations and exercises, this book covers the full range of topics necessary to develop a well-rounded understanding of modern categorical data analysis, including: * Logistic regression and log-linear models. * Exact conditional methods. * Generalized linear and additive models. * Smoothing count data with practical implementations in S-plus software. * Thorough description and analysis of five important computer packages. Supported by an ftp site, which describes the facilities important to a statistician wanting to analyze and report on categorical data, Statistical Analysis of Categorical Data is an excellent resource for students, practicing statisticians, and researchers with a special interest in count data.
Posted in Mathematics

Latent Class Analysis of Survey Error

Author: Paul P. Biemer

Publisher: John Wiley & Sons

ISBN: 9781118099575

Category: Mathematics

Page: 416

View: 6067

Combining theoretical, methodological, and practical aspects,Latent Class Analysis of Survey Error successfully guides readersthrough the accurate interpretation of survey results for qualityevaluation and improvement. This book is a comprehensive resourceon the key statistical tools and techniques employed during themodeling and estimation of classification errors, featuring aspecial focus on both latent class analysis (LCA) techniques andmodels for categorical data from complex sample surveys. Drawing from his extensive experience in the field of surveymethodology, the author examines early models for surveymeasurement error and identifies their similarities and differencesas well as their strengths and weaknesses. Subsequent chapterstreat topics related to modeling, estimating, and reducing errorsin surveys, including: Measurement error modeling forcategorical data The Hui-Walter model and othermethods for two indicators The EM algorithm and its role in latentclass model parameterestimation Latent class models for three ormore indicators Techniques for interpretation of modelparameter estimates Advanced topics in LCA, including sparse data, boundary values,unidentifiability, and local maxima Special considerations for analyzing datafrom clustered andunequal probability samples with nonresponse The current state of LCA and MLCA (multilevel latent classanalysis), and an insightful discussion on areas for furtherresearch Throughout the book, more than 100 real-world examples describethe presented methods in detail, and readers are guided through theuse of lEM software to replicate the presented analyses. Appendicessupply a primer on categorical data analysis, and a related Website houses the lEM software. Extensively class-tested to ensure an accessible presentation,Latent Class Analysis of Survey Error is an excellent book forcourses on measurement error and survey methodology at the graduatelevel. The book also serves as a valuable reference for researchersand practitioners working in business, government, and the socialsciences who develop, implement, or evaluate surveys.
Posted in Mathematics

Dirichlet and Related Distributions

Theory, Methods and Applications

Author: Kai Wang Ng,Guo-Liang Tian,Man-Lai Tang

Publisher: John Wiley & Sons

ISBN: 9781119998419

Category: Mathematics

Page: 336

View: 8321

The Dirichlet distribution appears in many areas of application, which include modelling of compositional data, Bayesian analysis, statistical genetics, and nonparametric inference. This book provides a comprehensive review of the Dirichlet distribution and two extended versions, the Grouped Dirichlet Distribution (GDD) and the Nested Dirichlet Distribution (NDD), arising from likelihood and Bayesian analysis of incomplete categorical data and survey data with non-response. The theoretical properties and applications are also reviewed in detail for other related distributions, such as the inverted Dirichlet distribution, Dirichlet-multinomial distribution, the truncated Dirichlet distribution, the generalized Dirichlet distribution, Hyper-Dirichlet distribution, scaled Dirichlet distribution, mixed Dirichlet distribution, Liouville distribution, and the generalized Liouville distribution. Key Features: Presents many of the results and applications that are scattered throughout the literature in one single volume. Looks at the most recent results such as survival function and characteristic function for the uniform distributions over the hyper-plane and simplex; distribution for linear function of Dirichlet components; estimation via the expectation-maximization gradient algorithm and application; etc. Likelihood and Bayesian analyses of incomplete categorical data by using GDD, NDD, and the generalized Dirichlet distribution are illustrated in detail through the EM algorithm and data augmentation structure. Presents a systematic exposition of the Dirichlet-multinomial distribution for multinomial data with extra variation which cannot be handled by the multinomial distribution. S-plus/R codes are featured along with practical examples illustrating the methods. Practitioners and researchers working in areas such as medical science, biological science and social science will benefit from this book.
Posted in Mathematics