Author: A. W. Chatters,C. R. Hajarnavis

Publisher: Clarendon Press

ISBN: 9780198501442

Category: Mathematics

Page: 144

View: 5899

Skip to content
#
Search Results for: an-introductory-course-in-commutative-algebra-oxford-science-publications

## An Introductory Course in Commutative Algebra

This book is a concise and carefully written introduction to topics in commutative algebra, with an emphasis on worked examples and applications. The elegant algebraic theory is combined with applications to number theory, problems in classical Greek geometry, and the theory of finite fields, which has important uses in other branches of science. Topics covered include an introduction to rings and Euclidean rings, UFDs and PIDs, factorization of polynomials, fields and field extensions, and algebraic numbers. This book could form a springboard to further study of abstract algebra, but is also eminently suitable as the course text for an entire undergraduate course.
## Introduction To Commutative Algebra, Student Economy Edition

This book grew out of a course of lectures given to third year undergraduates at Oxford University, and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. The author has concentrated on certain central topics, and large areas, such as field theory, are not touched. In content it covers rather more ground than Northcott and the treatment is substantially different in that, following the modern trend, more emphasis is put on modules and localization.
## Algebraic Geometry and Arithmetic Curves

This book is a general introduction to the theory of schemes, followed by applications to arithmetic surfaces and to the theory of reduction of algebraic curves. The first part introduces basic objects such as schemes, morphisms, base change, local properties (normality, regularity, Zariski's Main Theorem). This is followed by the more global aspect: coherent sheaves and a finiteness theorem for their cohomology groups. Then follows a chapter on sheaves of differentials, dualizing sheaves, and Grothendieck's duality theory. The first part ends with the theorem of Riemann-Roch and its application to the study of smooth projective curves over a field. Singular curves are treated through a detailed study of the Picard group. The second part starts with blowing-ups and desingularisation (embedded or not) of fibered surfaces over a Dedekind ring that leads on to intersection theory on arithmetic surfaces. Castelnuovo's criterion is proved and also the existence of the minimal regular model. This leads to the study of reduction of algebraic curves. The case of elliptic curves is studied in detail. The book concludes with the funadmental theorem of stable reduction of Deligne-Mumford. The book is essentially self-contained, including the necessary material on commutative algebra. The prerequisites are therefore few, and the book should suit a graduate student. It contains many examples and nearly 600 exercises.
## Combinatorial Commutative Algebra

Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs
## Nieuw Archief Voor Wiskunde

## Algebraic Geometry

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
## Introduction to Algebra

This book is an undergraduate textbook on abstract algebra, beginning with the theories of rings and groups. As this is the first really abstract material students need, the pace here is gentle, and the basic concepts of subring, homomorphism, ideal, etc are developed in detail. Later, as students gain confidence with abstractions, they are led to further developments in group and ring theory (simple groups and extensions, Noetherian rings, and outline of universal algebra, lattices andcategories) and to applications such as Galois theory and coding theory. There is also a chapter outlining the construction of the number systems from scratch and proving in three different ways that trascendental numbers exist.
## Algebraic Geometry

Algebraic geometry has a complicated, difficult language. This book contains a definition, several references and the statements of the main theorems (without proofs) for every of the most common words in this subject. Some terms of related subjects are included. It helps beginners that know some, but not all, basic facts of algebraic geometry to follow seminars and to read papers. The dictionary form makes it easy and quick to consult.
## The British National Bibliography

## Groups, Modules, and Model Theory - Surveys and Recent Developments

This volume focuses on group theory and model theory with a particular emphasis on the interplay of the two areas. The survey papers provide an overview of the developments across group, module, and model theory while the research papers present the most recent study in those same areas. With introductory sections that make the topics easily accessible to students, the papers in this volume will appeal to beginning graduate students and experienced researchers alike. As a whole, this book offers a cross-section view of the areas in group, module, and model theory, covering topics such as DP-minimal groups, Abelian groups, countable 1-transitive trees, and module approximations. The papers in this book are the proceedings of the conference “New Pathways between Group Theory and Model Theory,” which took place February 1-4, 2016, in Mülheim an der Ruhr, Germany, in honor of the editors’ colleague Rüdiger Göbel. This publication is dedicated to Professor Göbel, who passed away in 2014. He was one of the leading experts in Abelian group theory.
## Advances in Ultrametric Analysis

Articles included in this book feature recent developments in various areas of non-Archimedean analysis: summation of -adic series, rational maps on the projective line over , non-Archimedean Hahn-Banach theorems, ultrametric Calkin algebras, -modules with a convex base, non-compact Trace class operators and Schatten-class operators in -adic Hilbert spaces, algebras of strictly differentiable functions, inverse function theorem and mean value theorem in Levi-Civita fields, ultrametric spectra of commutative non-unital Banach rings, classes of non-Archimedean Köthe spaces, -adic Nevanlinna theory and applications, and sub-coordinate representation of -adic functions. Moreover, a paper on the history of -adic analysis with a comparative summary of non-Archimedean fields is presented. Through a combination of new research articles and a survey paper, this book provides the reader with an overview of current developments and techniques in non-Archimedean analysis as well as a broad knowledge of some of the sub-areas of this exciting and fast-developing research area.
## Deformation Theory

The basic problem of deformation theory in algebraic geometry involves watching a small deformation of one member of a family of objects, such as varieties, or subschemes in a fixed space, or vector bundles on a fixed scheme. In this new book, Robin Hartshorne studies first what happens over small infinitesimal deformations, and then gradually builds up to more global situations, using methods pioneered by Kodaira and Spencer in the complex analytic case, and adapted and expanded in algebraic geometry by Grothendieck. The author includes numerous exercises, as well as important examples illustrating various aspects of the theory. This text is based on a graduate course taught by the author at the University of California, Berkeley.
## Model Theory : An Introduction

Assumes only a familiarity with algebra at the beginning graduate level; Stresses applications to algebra; Illustrates several of the ways Model Theory can be a useful tool in analyzing classical mathematical structures
## Algebraic Varieties

An introduction to the theory of algebraic functions on varieties from a sheaf theoretic standpoint.
## New Scientist

## Codes: An Introduction to Information Communication and Cryptography

Many people do not realise that mathematics provides the foundation for the devices we use to handle information in the modern world. Most of those who do know probably think that the parts of mathematics involvedare quite ‘cl- sical’, such as Fourier analysis and di?erential equations. In fact, a great deal of the mathematical background is part of what used to be called ‘pure’ ma- ematics, indicating that it was created in order to deal with problems that originated within mathematics itself. It has taken many years for mathema- cians to come to terms with this situation, and some of them are still not entirely happy about it. Thisbookisanintegratedintroductionto Coding.Bythis Imeanreplacing symbolic information, such as a sequence of bits or a message written in a naturallanguage,byanother messageusing (possibly) di?erentsymbols.There are three main reasons for doing this: Economy (data compression), Reliability (correction of errors), and Security (cryptography). I have tried to cover each of these three areas in su?cient depth so that the reader can grasp the basic problems and go on to more advanced study. The mathematical theory is introduced in a way that enables the basic problems to bestatedcarefully,butwithoutunnecessaryabstraction.Theprerequisites(sets andfunctions,matrices,?niteprobability)shouldbefamiliartoanyonewhohas taken a standard course in mathematical methods or discrete mathematics. A course in elementary abstract algebra and/or number theory would be helpful, but the book contains the essential facts, and readers without this background should be able to understand what is going on. vi Thereareafewplaceswherereferenceismadetocomputeralgebrasystems.
## Matroid Theory

This volume contains the proceedings of the 1995 AMS-IMS-SIAM Joint Summer Research Conference on Matroid Theory held at the University of Washington, Seattle. The book features three comprehensive surveys that bring the reader to the forefront of research in matroid theory. Joseph Kung's encyclopedic treatment of the critical problem traces the development of this problem from its origins through its numerous links with other branches of mathematics to the current status of its many aspects. James Oxley's survey of the role of connectivity and structure theorems in matroid theory stresses the influence of the Wheels and Whirls Theorem of Tutte and the Splitter Theorem of Seymour. Walter Whiteley's article unifies applications of matroid theory to constrained geometrical systems, including the rigidity of bar-and-joint frameworks, parallel drawings, and splines. These widely accessible articles contain many new results and directions for further research and applications. The surveys are complemented by selected short research papers. The volume concludes with a chapter of open problems. Features self-contained, accessible surveys of three active research areas in matroid theory; many new results; pointers to new research topics; a chapter of open problems; mathematical applications; and applications and connections to other disciplines, such as computer-aided design and electrical and structural engineering.
## D-Modules, Perverse Sheaves, and Representation Theory

D-modules continues to be an active area of stimulating research in such mathematical areas as algebraic, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, representation theory.
## Algebraic Geometry

This book introduces the reader to modern algebraic geometry. It presents Grothendieck's technically demanding language of schemes that is the basis of the most important developments in the last fifty years within this area. A systematic treatment and motivation of the theory is emphasized, using concrete examples to illustrate its usefulness. Several examples from the realm of Hilbert modular surfaces and of determinantal varieties are used methodically to discuss the covered techniques. Thus the reader experiences that the further development of the theory yields an ever better understanding of these fascinating objects. The text is complemented by many exercises that serve to check the comprehension of the text, treat further examples, or give an outlook on further results. The volume at hand is an introduction to schemes. To get startet, it requires only basic knowledge in abstract algebra and topology. Essential facts from commutative algebra are assembled in an appendix. It will be complemented by a second volume on the cohomology of schemes.
## American Book Publishing Record

Full PDF eBook Download Free

Author: A. W. Chatters,C. R. Hajarnavis

Publisher: Clarendon Press

ISBN: 9780198501442

Category: Mathematics

Page: 144

View: 5899

Author: Michael Atiyah

Publisher: CRC Press

ISBN: 042997325X

Category: Science

Page: 140

View: 7760

Author: Qing Liu,Reinie Erne

Publisher: Oxford University Press

ISBN: 0191547808

Category: Mathematics

Page: 592

View: 7558

Author: Ezra Miller,Bernd Sturmfels

Publisher: Springer Science & Business Media

ISBN: 0387271031

Category: Mathematics

Page: 420

View: 5954

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 9397

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

ISBN: 1475738498

Category: Mathematics

Page: 496

View: 9765

Author: Peter Jephson Cameron

Publisher: Oxford University Press, USA

ISBN: 9780198501954

Category: Mathematics

Page: 295

View: 7590

*A Concise Dictionary*

Author: Elena Rubei

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110316234

Category: Mathematics

Page: 239

View: 5630

Author: Arthur James Wells

Publisher: N.A

ISBN: N.A

Category: English literature

Page: N.A

View: 5118

*In Memory of Rüdiger Göbel*

Author: Manfred Droste,László Fuchs,Brendan Goldsmith,Lutz Strüngmann

Publisher: Springer

ISBN: 331951718X

Category: Mathematics

Page: 475

View: 6445

Author: Alain Escassut,Cristina Perez-Garcia,Khodr Shamseddine

Publisher: American Mathematical Soc.

ISBN: 1470434911

Category: Functional analysis

Page: 290

View: 3823

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

ISBN: 1441915966

Category: Mathematics

Page: 234

View: 7760

Author: David Marker

Publisher: Springer Science & Business Media

ISBN: 0387227342

Category: Mathematics

Page: 345

View: 8754

Author: G. Kempf

Publisher: Cambridge University Press

ISBN: 9780521426138

Category: Mathematics

Page: 163

View: 7006

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Science

Page: N.A

View: 7727

Author: Norman L. Biggs

Publisher: Springer Science & Business Media

ISBN: 9781848002739

Category: Computers

Page: 274

View: 3641

*AMS-IMS-SIAM Joint Summer Research Conference on Matroid Theory, July 2-6, 1995, University of Washington, Seattle*

Author: Joseph Edmond Bonin

Publisher: American Mathematical Soc.

ISBN: 0821805088

Category: Mathematics

Page: 418

View: 5573

Author: Ryoshi Hotta,Toshiyuki Tanisaki

Publisher: Springer Science & Business Media

ISBN: 081764363X

Category: Mathematics

Page: 412

View: 9289

*Part I: Schemes. With Examples and Exercises*

Author: Ulrich Görtz,Torsten Wedhorn

Publisher: Springer Science & Business Media

ISBN: 9783834897220

Category: Mathematics

Page: 615

View: 7163

Author: N.A

Publisher: N.A

ISBN: N.A

Category: American literature

Page: N.A

View: 9643