Author: Peter J. Eccles

Publisher: Cambridge University Press

ISBN: 9780521597180

Category: Mathematics

Page: 350

View: 3990

Skip to content
#
Search Results for: an-introduction-to-mathematical-reasoning-numbers-sets-and-functions

## An Introduction to Mathematical Reasoning

This book eases students into the rigors of university mathematics. The emphasis is on understanding and constructing proofs and writing clear mathematics. The author achieves this by exploring set theory, combinatorics, and number theory, topics that include many fundamental ideas and may not be a part of a young mathematician's toolkit. This material illustrates how familiar ideas can be formulated rigorously, provides examples demonstrating a wide range of basic methods of proof, and includes some of the all-time-great classic proofs. The book presents mathematics as a continually developing subject. Material meeting the needs of readers from a wide range of backgrounds is included. The over 250 problems include questions to interest and challenge the most able student but also plenty of routine exercises to help familiarize the reader with the basic ideas.
## An Introduction to Mathematical Reasoning

The purpose of this book is to introduce the basic ideas of mathematical proof to students embarking on university mathematics. The emphasis is on helping the reader in understanding and constructing proofs and writing clear mathematics. This is achieved by exploring set theory, combinatorics and number theory, topics which include many fundamental ideas which are part of the tool kit of any mathematician. This material illustrates how familiar ideas can be formulated rigorously, provides examples demonstrating a wide range of basic methods of proof, and includes some of the classic proofs. The book presents mathematics as a continually developing subject. Material meeting the needs of readers from a wide range of backgrounds is included. Over 250 problems include questions to interest and challenge the most able student as well as plenty of routine exercises to help familiarize the reader with the basic ideas.
## An Introduction to Abstract Mathematics

Bond and Keane explicate the elements of logical, mathematical argument to elucidate the meaning and importance of mathematical rigor. With definitions of concepts at their disposal, students learn the rules of logical inference, read and understand proofs of theorems, and write their own proofs all while becoming familiar with the grammar of mathematics and its style. In addition, they will develop an appreciation of the different methods of proof (contradiction, induction), the value of a proof, and the beauty of an elegant argument. The authors emphasize that mathematics is an ongoing, vibrant disciplineits long, fascinating history continually intersects with territory still uncharted and questions still in need of answers. The authors extensive background in teaching mathematics shines through in this balanced, explicit, and engaging text, designed as a primer for higher- level mathematics courses. They elegantly demonstrate process and application and recognize the byproducts of both the achievements and the missteps of past thinkers. Chapters 1-5 introduce the fundamentals of abstract mathematics and chapters 6-8 apply the ideas and techniques, placing the earlier material in a real context. Readers interest is continually piqued by the use of clear explanations, practical examples, discussion and discovery exercises, and historical comments.
## Yet Another Introduction to Analysis

Mathematics education in schools has seen a revolution in recent years. Students everywhere expect the subject to be well-motivated, relevant and practical. When such students reach higher education the traditional development of analysis, often rather divorced from the calculus which they learnt at school, seems highly inappropriate. Shouldn't every step in a first course in analysis arise naturally from the student's experience of functions and calculus at school? And shouldn't such a course take every opportunity to endorse and extend the student's basic knowledge of functions? In Yet Another Introduction to Analysis the author steers a simple and well-motivated path through the central ideas of real analysis. Each concept is introduced only after its need has become clear and after it has already been used informally. Wherever appropriate the new ideas are related to school topics and are used to extend the reader's understanding of those topics. A first course in analysis at college is always regarded as one of the hardest in the curriculum. However, in this book the reader is led carefully through every step in such a way that he/she will soon be predicting the next step for him/herself. In this way the subject is developed naturally: students will end up not only understanding analysis, but also enjoying it.
## A First Course in Mathematical Logic and Set Theory

Rather than teach mathematics and the structure of proofssimultaneously, this book first introduces logic as the foundationof proofs and then demonstrates how logic applies to mathematicaltopics. This method ensures that readers gain a firmunderstanding of how logic interacts with mathematics and empowersthem to solve more complex problems. The study of logic andapplications is used throughout to prepare readers for further workin proof writing. Readers are first introduced tomathematical proof-writing, and then the book provides anoverview of symbolic logic that includes two-column logicproofs. Readers are then transitioned to set theory andinduction, and applications of number theory, relations, functions,groups, and topology are provided to further aid incomprehension. Topical coverage includes propositional logic,predicate logic, set theory, mathematical induction, number theory,relations, functions, group theory, and topology.
## How to Prove It

Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.
## Fundamentals of Elementary Mathematics

Fundamentals of Elementary Mathematics provides an understanding of the fundamental aspects of elementary mathematics. This book presents the relevance of the mathematical concepts, which are also demonstrated in numerous exercises. Organized into 10 chapters, this book begins with an overview of the study of logic to understand the nature of mathematics. This text then discusses mathematics as a system of structure or as a collection of substructures. Other chapters consider the four essential components in a mathematical or logical system or structure, namely, undefined terms, defined terms, postulates, and theorems. This book discusses as well several principles used in numeration systems and provides examples of some numeration systems that are in use to illustrate these principles. The final chapter deals with the classification of certain mathematical systems as groups, fields, or rings to demonstrate some abstract mathematics. This book is a valuable resource for students and teachers in elementary mathematics.
## Introduction to Proof in Abstract Mathematics

This undergraduate text teaches students what constitutes an acceptable proof, and it develops their ability to do proofs of routine problems as well as those requiring creative insights. 1990 edition.
## An Introduction to the Approximation of Functions

Mathematics of Computing -- Numerical Analysis.
## An Introduction to Mathematical Thinking

Besides giving readers the techniques for solving polynomial equations and congruences, An Introduction to Mathematical Thinking provides preparation for understanding more advanced topics in Linear and Modern Algebra, as well as Calculus. This book introduces proofs and mathematical thinking while teaching basic algebraic skills involving number systems, including the integers and complex numbers. Ample questions at the end of each chapter provide opportunities for learning and practice; the Exercises are routine applications of the material in the chapter, while the Problems require more ingenuity, ranging from easy to nearly impossible. Topics covered in this comprehensive introduction range from logic and proofs, integers and diophantine equations, congruences, induction and binomial theorem, rational and real numbers, and functions and bijections to cryptography, complex numbers, and polynomial equations. With its comprehensive appendices, this book is an excellent desk reference for mathematicians and those involved in computer science.
## Advanced Mathematical Methods

This text is a self-contained second course on mathematical methods dealing with topics in linear algebra and multivariate calculus that can be applied to statistics.
## Discrete Mathematics

This books gives an introduction to discrete mathematics for beginning undergraduates. One of original features of this book is that it begins with a presentation of the rules of logic as used in mathematics. Many examples of formal and informal proofs are given. With this logical framework firmly in place, the book describes the major axioms of set theory and introduces the natural numbers. The rest of the book is more standard. It deals with functions and relations, directed and undirected graphs, and an introduction to combinatorics. There is a section on public key cryptography and RSA, with complete proofs of Fermat's little theorem and the correctness of the RSA scheme, as well as explicit algorithms to perform modular arithmetic. The last chapter provides more graph theory. Eulerian and Hamiltonian cycles are discussed. Then, we study flows and tensions and state and prove the max flow min-cut theorem. We also discuss matchings, covering, bipartite graphs.
## Proofs from THE BOOK

This revised and enlarged sixth edition of Proofs from THE BOOK features an entirely new chapter on Van der Waerden’s permanent conjecture, as well as additional, highly original and delightful proofs in other chapters. From the citation on the occasion of the 2018 "Steele Prize for Mathematical Exposition" “... It is almost impossible to write a mathematics book that can be read and enjoyed by people of all levels and backgrounds, yet Aigner and Ziegler accomplish this feat of exposition with virtuoso style. [...] This book does an invaluable service to mathematics, by illustrating for non-mathematicians what it is that mathematicians mean when they speak about beauty.” From the Reviews "... Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. ... Aigner and Ziegler... write: "... all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999 "... This book is a pleasure to hold and to look at: ample margins, nice photos, instructive pictures and beautiful drawings ... It is a pleasure to read as well: the style is clear and entertaining, the level is close to elementary, the necessary background is given separately and the proofs are brilliant. ..." LMS Newsletter, January 1999 "Martin Aigner and Günter Ziegler succeeded admirably in putting together a broad collection of theorems and their proofs that would undoubtedly be in the Book of Erdös. The theorems are so fundamental, their proofs so elegant and the remaining open questions so intriguing that every mathematician, regardless of speciality, can benefit from reading this book. ... " SIGACT News, December 2011
## The Tools of Mathematical Reasoning

This accessible textbook gives beginning undergraduate mathematics students a first exposure to introductory logic, proofs, sets, functions, number theory, relations, finite and infinite sets, and the foundations of analysis. The book provides students with a quick path to writing proofs and a practical collection of tools that they can use in later mathematics courses such as abstract algebra and analysis. The importance of the logical structure of a mathematical statement as a framework for finding a proof of that statement, and the proper use of variables, is an early and consistent theme used throughout the book.
## Naive Set Theory

Classic by prominent mathematician offers a concise introduction to set theory using language and notation of informal mathematics. Topics include the basic concepts of set theory, cardinal numbers, transfinite methods, more. 1960 edition.
## Mathematical Reasoning

Mathematical Reasoning: Writing and Proof is a text for the ?rst college mathematics course that introduces students to the processes of constructing and writing proofs and focuses on the formal development of mathematics. The primary goals of the text are to help students: Develop logical thinking skills and to develop the ability to think more abstractly in a proof oriented setting; develop the ability to construct and write mathematical proofs using standard methods of mathematical proof including direct proofs, proof by contradiction, mathematical induction, case analysis, and counterexamples; develop the ability to read and understand written mathematical proofs; develop talents for creative thinking and problem solving; improve their quality of communication in mathematics. This includes improving writing techniques, reading comprehension, and oral communication in mathematics; better understand the nature of mathematics and its language. Another important goal of this text is to provide students with material that will be needed for their further study of mathematics. Important features of the book include: Emphasis on writing in mathematics; instruction in the process of constructing proofs; emphasis on active learning.There are no changes in content between Version 2.0 and previous versions of the book. The only change is that the appendix with answers and hints for selected exercises now contains solutions and hints for more exercises.
## A Concise Introduction to Pure Mathematics, Fourth Edition

Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Fourth Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations; Euler’s formula for the numbers of corners, edges, and faces of a solid object and the five Platonic solids; the use of prime numbers to encode and decode secret information; the theory of how to compare the sizes of two infinite sets; and the rigorous theory of limits and continuous functions. New to the Fourth Edition Two new chapters that serve as an introduction to abstract algebra via the theory of groups, covering abstract reasoning as well as many examples and applications New material on inequalities, counting methods, the inclusion-exclusion principle, and Euler’s phi function Numerous new exercises, with solutions to the odd-numbered ones Through careful explanations and examples, this popular textbook illustrates the power and beauty of basic mathematical concepts in number theory, discrete mathematics, analysis, and abstract algebra. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher-level mathematics, enabling students to study more advanced courses in abstract algebra and analysis.
## The Art of Proof

The Art of Proof is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, the student's previous intuitive knowledge is placed on solid intellectual ground. The topics covered include: integers, induction, algorithms, real numbers, rational numbers, modular arithmetic, limits, and uncountable sets. Methods, such as axiom, theorem and proof, are taught while discussing the mathematics rather than in abstract isolation. The book ends with short essays on further topics suitable for seminar-style presentation by small teams of students, either in class or in a mathematics club setting. These include: continuity, cryptography, groups, complex numbers, ordinal number, and generating functions.
## Sets, Functions, and Logic

Keith Devlin. You know him. You've read his columns in MAA Online, you've heard him on the radio, and you've seen his popular mathematics books. In between all those activities and his own research, he's been hard at work revising Sets, Functions and Logic, his standard-setting text that has smoothed the road to pure mathematics for legions of undergraduate students. Now in its third edition, Devlin has fully reworked the book to reflect a new generation. The narrative is more lively and less textbook-like. Remarks and asides link the topics presented to the real world of students' experience. The chapter on complex numbers and the discussion of formal symbolic logic are gone in favor of more exercises, and a new introductory chapter on the nature of mathematics--one that motivates readers and sets the stage for the challenges that lie ahead. Students crossing the bridge from calculus to higher mathematics need and deserve all the help they can get. Sets, Functions, and Logic, Third Edition is an affordable little book that all of your transition-course students not only can afford, but will actually read...and enjoy...and learn from. About the Author Dr. Keith Devlin is Executive Director of Stanford University's Center for the Study of Language and Information and a Consulting Professor of Mathematics at Stanford. He has written 23 books, one interactive book on CD-ROM, and over 70 published research articles. He is a Fellow of the American Association for the Advancement of Science, a World Economic Forum Fellow, and a former member of the Mathematical Sciences Education Board of the National Academy of Sciences,. Dr. Devlin is also one of the world's leading popularizers of mathematics. Known as "The Math Guy" on NPR's Weekend Edition, he is a frequent contributor to other local and national radio and TV shows in the US and Britain, writes a monthly column for the Web journal MAA Online, and regularly writes on mathematics and computers for the British newspaper The Guardian.
## Book of Proof

This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.

Full PDF eBook Download Free

Author: Peter J. Eccles

Publisher: Cambridge University Press

ISBN: 9780521597180

Category: Mathematics

Page: 350

View: 3990

*Numbers, Sets and Functions*

Author: Peter J. Eccles

Publisher: Cambridge University Press

ISBN: 1139643363

Category: Mathematics

Page: N.A

View: 3472

Author: Robert J. Bond,William J. Keane

Publisher: Waveland Press

ISBN: 1478608056

Category: Mathematics

Page: 323

View: 5229

Author: Victor Bryant

Publisher: Cambridge University Press

ISBN: 1107717221

Category: Mathematics

Page: 298

View: 5425

Author: Michael L. O'Leary

Publisher: John Wiley & Sons

ISBN: 0470905883

Category: Mathematics

Page: 464

View: 6415

*A Structured Approach*

Author: Daniel J. Velleman

Publisher: Cambridge University Press

ISBN: 1139450972

Category: Mathematics

Page: N.A

View: 4644

Author: Merlyn J. Behr,Dale G. Jungst

Publisher: Elsevier

ISBN: 1483277798

Category: Mathematics

Page: 440

View: 1487

Author: Andrew Wohlgemuth

Publisher: Courier Corporation

ISBN: 0486141683

Category: Mathematics

Page: 384

View: 3489

Author: Theodore J. Rivlin

Publisher: Courier Corporation

ISBN: 9780486640693

Category: Mathematics

Page: 150

View: 2148

*Algebra and Number Systems*

Author: William J. Gilbert,Scott A. Vanstone

Publisher: Prentice Hall

ISBN: 9780131848689

Category: Mathematics

Page: 300

View: 9295

Author: Adam Ostaszewski

Publisher: Cambridge University Press

ISBN: 9780521289641

Category: Mathematics

Page: 545

View: 1832

Author: Jean Gallier

Publisher: Springer Science & Business Media

ISBN: 9781441980472

Category: Mathematics

Page: 466

View: 8544

Author: Martin Aigner,Günter M. Ziegler

Publisher: Springer

ISBN: 3662572656

Category: Mathematics

Page: 326

View: 1251

Author: Tamara J. Lakins

Publisher: American Mathematical Soc.

ISBN: 1470428997

Category: General -- Instructional exposition (textbooks, tutorial papers, etc.)

Page: 217

View: 3112

Author: Paul R. Halmos

Publisher: Courier Dover Publications

ISBN: 0486814874

Category: Mathematics

Page: 112

View: 4592

*Writing and Proof Version 2.0*

Author: Ted Sundstrom

Publisher: N.A

ISBN: 9781500143411

Category:

Page: 608

View: 8645

Author: Martin Liebeck

Publisher: CRC Press

ISBN: 1498722938

Category: Mathematics

Page: 301

View: 8695

*Basic Training for Deeper Mathematics*

Author: Matthias Beck,Ross Geoghegan

Publisher: Springer Science & Business Media

ISBN: 9781441970237

Category: Mathematics

Page: 182

View: 6360

*An Introduction to Abstract Mathematics, Third Edition*

Author: Keith Devlin

Publisher: CRC Press

ISBN: 1482286025

Category: Mathematics

Page: 160

View: 4552

Author: Richard H. Hammack

Publisher: N.A

ISBN: 9780989472111

Category: Mathematics

Page: 314

View: 840