All of Statistics

A Concise Course in Statistical Inference

Author: Larry Wasserman

Publisher: Springer Science & Business Media

ISBN: 0387217363

Category: Mathematics

Page: 442

View: 6358

Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Posted in Mathematics

All of Nonparametric Statistics

Author: Larry Wasserman

Publisher: Springer Science & Business Media

ISBN: 9780387306230

Category: Mathematics

Page: 270

View: 1837

This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.
Posted in Mathematics

Introduction to Nonparametric Estimation

Author: Alexandre B. Tsybakov

Publisher: Springer Science & Business Media

ISBN: 0387790527

Category: Mathematics

Page: 214

View: 7129

Developed from lecture notes and ready to be used for a course on the graduate level, this concise text aims to introduce the fundamental concepts of nonparametric estimation theory while maintaining the exposition suitable for a first approach in the field.
Posted in Mathematics

Theoretical Statistics

Topics for a Core Course

Author: Robert W. Keener

Publisher: Springer Science & Business Media

ISBN: 9780387938394

Category: Mathematics

Page: 538

View: 1263

Intended as the text for a sequence of advanced courses, this book covers major topics in theoretical statistics in a concise and rigorous fashion. The discussion assumes a background in advanced calculus, linear algebra, probability, and some analysis and topology. Measure theory is used, but the notation and basic results needed are presented in an initial chapter on probability, so prior knowledge of these topics is not essential. The presentation is designed to expose students to as many of the central ideas and topics in the discipline as possible, balancing various approaches to inference as well as exact, numerical, and large sample methods. Moving beyond more standard material, the book includes chapters introducing bootstrap methods, nonparametric regression, equivariant estimation, empirical Bayes, and sequential design and analysis. The book has a rich collection of exercises. Several of them illustrate how the theory developed in the book may be used in various applications. Solutions to many of the exercises are included in an appendix.
Posted in Mathematics

Statistical Inference

A Concise Course

Author: Robert B. Ash

Publisher: Courier Corporation

ISBN: 0486481581

Category: Mathematics

Page: 124

View: 365

This book offers a brief course in statistical inference that requires only a basic familiarity with probability and matrix and linear algebra. Ninety problems with solutions make it an ideal choice for self-study as well as a helpful review of a wide-ranging topic with important uses to professionals in business, government, public administration, and other fields. 2011 edition.
Posted in Mathematics

Intuitive Introductory Statistics

Author: Douglas A. Wolfe,Grant Schneider

Publisher: Springer

ISBN: 3319560727

Category: Mathematics

Page: 976

View: 9577

This textbook is designed to give an engaging introduction to statistics and the art of data analysis. The unique scope includes, but also goes beyond, classical methodology associated with the normal distribution. What if the normal model is not valid for a particular data set? This cutting-edge approach provides the alternatives. It is an introduction to the world and possibilities of statistics that uses exercises, computer analyses, and simulations throughout the core lessons. These elementary statistical methods are intuitive. Counting and ranking features prominently in the text. Nonparametric methods, for instance, are often based on counts and ranks and are very easy to integrate into an introductory course.​ The ease of computation with advanced calculators and statistical software, both of which factor into this text, allows important techniques to be introduced earlier in the study of statistics. This book's novel scope also includes measuring symmetry with Walsh averages, finding a nonparametric regression line, jackknifing, and bootstrapping​. Concepts and techniques are explored through practical problems. Quantitative reasoning is at the core of so many professions and academic disciplines, and this book opens the door to the most modern possibilities.
Posted in Mathematics

Statistical Models and Methods for Financial Markets

Author: Tze Leung Lai,Haipeng Xing

Publisher: Springer Science & Business Media

ISBN: 0387778276

Category: Business & Economics

Page: 356

View: 5329

The idea of writing this bookarosein 2000when the ?rst author wasassigned to teach the required course STATS 240 (Statistical Methods in Finance) in the new M. S. program in ?nancial mathematics at Stanford, which is an interdisciplinary program that aims to provide a master’s-level education in applied mathematics, statistics, computing, ?nance, and economics. Students in the programhad di?erent backgroundsin statistics. Some had only taken a basic course in statistical inference, while others had taken a broad spectrum of M. S. - and Ph. D. -level statistics courses. On the other hand, all of them had already taken required core courses in investment theory and derivative pricing, and STATS 240 was supposed to link the theory and pricing formulas to real-world data and pricing or investment strategies. Besides students in theprogram,thecoursealso attractedmanystudentsfromother departments in the university, further increasing the heterogeneity of students, as many of them had a strong background in mathematical and statistical modeling from the mathematical, physical, and engineering sciences but no previous experience in ?nance. To address the diversity in background but common strong interest in the subject and in a potential career as a “quant” in the ?nancialindustry,thecoursematerialwascarefullychosennotonlytopresent basic statistical methods of importance to quantitative ?nance but also to summarize domain knowledge in ?nance and show how it can be combined with statistical modeling in ?nancial analysis and decision making. The course material evolved over the years, especially after the second author helped as the head TA during the years 2004 and 2005.
Posted in Business & Economics

Introduction to Empirical Processes and Semiparametric Inference

Author: Michael R. Kosorok

Publisher: Springer Science & Business Media

ISBN: 9780387749785

Category: Mathematics

Page: 483

View: 5617

Kosorok’s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. This is an authoritative text that covers all the bases, and also a friendly and gradual introduction to the area. The book can be used as research reference and textbook.
Posted in Mathematics

Fundamentals of Probability: A First Course

Author: Anirban DasGupta

Publisher: Springer Science & Business Media

ISBN: 1441957804

Category: Mathematics

Page: 450

View: 1122

Probability theory is one branch of mathematics that is simultaneously deep and immediately applicable in diverse areas of human endeavor. It is as fundamental as calculus. Calculus explains the external world, and probability theory helps predict a lot of it. In addition, problems in probability theory have an innate appeal, and the answers are often structured and strikingly beautiful. A solid background in probability theory and probability models will become increasingly more useful in the twenty-?rst century, as dif?cult new problems emerge, that will require more sophisticated models and analysis. Thisisa text onthe fundamentalsof thetheoryofprobabilityat anundergraduate or ?rst-year graduate level for students in science, engineering,and economics. The only mathematical background required is knowledge of univariate and multiva- ate calculus and basic linear algebra. The book covers all of the standard topics in basic probability, such as combinatorial probability, discrete and continuous distributions, moment generating functions, fundamental probability inequalities, the central limit theorem, and joint and conditional distributions of discrete and continuous random variables. But it also has some unique features and a forwa- looking feel.
Posted in Mathematics

Modern Multivariate Statistical Techniques

Regression, Classification, and Manifold Learning

Author: Alan J. Izenman

Publisher: Springer Science & Business Media

ISBN: 9780387781891

Category: Mathematics

Page: 733

View: 1032

This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.
Posted in Mathematics

A Course in Mathematical Statistics and Large Sample Theory

Author: Rabi Bhattacharya,Lizhen Lin,Victor Patrangenaru

Publisher: Springer

ISBN: 1493940325

Category: Mathematics

Page: 389

View: 9267

This graduate-level textbook is primarily aimed at graduate students of statistics, mathematics, science, and engineering who have had an undergraduate course in statistics, an upper division course in analysis, and some acquaintance with measure theoretic probability. It provides a rigorous presentation of the core of mathematical statistics. Part I of this book constitutes a one-semester course on basic parametric mathematical statistics. Part II deals with the large sample theory of statistics - parametric and nonparametric, and its contents may be covered in one semester as well. Part III provides brief accounts of a number of topics of current interest for practitioners and other disciplines whose work involves statistical methods.
Posted in Mathematics

Theory of Statistics

Author: Mark J. Schervish

Publisher: Springer Science & Business Media

ISBN: 1461242509

Category: Mathematics

Page: 716

View: 5774

The aim of this graduate textbook is to provide a comprehensive advanced course in the theory of statistics covering those topics in estimation, testing, and large sample theory which a graduate student might typically need to learn as preparation for work on a Ph.D. An important strength of this book is that it provides a mathematically rigorous and even-handed account of both Classical and Bayesian inference in order to give readers a broad perspective. For example, the "uniformly most powerful" approach to testing is contrasted with available decision-theoretic approaches.
Posted in Mathematics

An Introduction to Statistical Learning

with Applications in R

Author: Gareth James,Daniela Witten,Trevor Hastie,Robert Tibshirani

Publisher: Springer Science & Business Media

ISBN: 1461471389

Category: Mathematics

Page: 426

View: 2470

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
Posted in Mathematics

Statistical Analysis and Data Display

An Intermediate Course with Examples in R

Author: Richard M. Heiberger,Burt Holland

Publisher: Springer

ISBN: 1493921223

Category: Mathematics

Page: 898

View: 8108

This contemporary presentation of statistical methods features extensive use of graphical displays for exploring data and for displaying the analysis. The authors demonstrate how to analyze data—showing code, graphics, and accompanying tabular listings—for all the methods they cover. They emphasize how to construct and interpret graphs. They discuss principles of graphical design. They identify situations where visual impressions from graphs may need confirmation from traditional tabular results. All chapters have exercises. The authors provide and discuss R functions for all the new graphical display formats. All graphs and tabular output in the book were constructed using these functions. Complete R scripts for all examples and figures are provided for readers to use as models for their own analyses. This book can serve as a standalone text for statistics majors at the master’s level and for other quantitatively oriented disciplines at the doctoral level, and as a reference book for researchers. In-depth discussions of regression analysis, analysis of variance, and design of experiments are followed by introductions to analysis of discrete bivariate data, nonparametrics, logistic regression, and ARIMA time series modeling. The authors illustrate classical concepts and techniques with a variety of case studies using both newer graphical tools and traditional tabular displays. The Second Edition features graphs that are completely redrawn using the more powerful graphics infrastructure provided by R's lattice package. There are new sections in several of the chapters, revised sections in all chapters and several completely new appendices. New graphical material includes: • an expanded chapter on graphics • a section on graphing Likert Scale Data to build on the importance of rating scales in fields from population studies to psychometrics • a discussion on design of graphics that will work for readers with color-deficient vision • an expanded discussion on the design of multi-panel graphics • expanded and new sections in the discrete bivariate statistics capter on the use of mosaic plots for contingency tables including the n×2×2 tables for which the Mantel–Haenszel–Cochran test is appropriate • an interactive (using the shiny package) presentation of the graphics for the normal and t-tables that is introduced early and used in many chapters The new appendices include discussions of R, the HH package designed for R (the material in the HH package was distributed as a set of standalone functions with the First Edition of this book), the R Commander package, the RExcel system, the shiny package, and a minimal discussion on writing R packages. There is a new appendix on computational precision illustrating and explaining the FAQ (Frequently Asked Questions) about the differences between the familiar real number system and the less-familiar floating point system used in computers. The probability distributions appendix has been expanded to include more distributions (all the distributions in base R) and to include graphs of each. The editing appendix from the First Edition has been split into four expanded appendices—on working style, writing style, use of a powerful editor, and use of LaTeX for document preparation.
Posted in Mathematics

Mathematical Statistics: Exercises and Solutions

Author: Jun Shao

Publisher: Springer Science & Business Media

ISBN: 0387282769

Category: Mathematics

Page: 360

View: 777

The exercises are grouped into seven chapters with titles matching those in the author's Mathematical Statistics. Can also be used as a stand-alone because exercises and solutions are comprehensible independently of their source, and notation and terminology are explained in the front of the book. Suitable for self-study for a statistics Ph.D. qualifying exam.
Posted in Mathematics

Bayesian Nonparametric Data Analysis

Author: Peter Müller,Fernando Andrés Quintana,Alejandro Jara,Tim Hanson

Publisher: Springer

ISBN: 3319189689

Category: Mathematics

Page: 193

View: 7413

This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages.
Posted in Mathematics

Practical Nonparametric Statistics

Author: W. J. Conover

Publisher: N.A

ISBN: 9780471168515

Category: Mathematics

Page: 462

View: 5881

Probability theory; Statistical inference; Some tests based on the binomial distribution; Contingency tables; The use of ranks; Statistics of the kolmogorov-smirnov type; Some miscellaneous tests.
Posted in Mathematics

An Introduction to Modern Nonparametric Statistics

Author: James J. Higgins

Publisher: Duxbury Press

ISBN: 9780534387754

Category: Mathematics

Page: 366

View: 6417

Guided by problems that frequently arise in actual practice, James Higgins’ book presents a wide array of nonparametric methods of data analysis that researchers will find useful. It discusses a variety of nonparametric methods and, wherever possible, stresses the connection between methods. For instance, rank tests are introduced as special cases of permutation tests applied to ranks. The author provides coverage of topics not often found in nonparametric textbooks, including procedures for multivariate data, multiple regression, multi-factor analysis of variance, survival data, and curve smoothing. This truly modern approach teaches non-majors how to analyze and interpret data with nonparametric procedures using today’s computing technology.
Posted in Mathematics

Computer Age Statistical Inference

Algorithms, Evidence, and Data Science

Author: Bradley Efron,Trevor Hastie

Publisher: Cambridge University Press

ISBN: 1108107958

Category: Mathematics

Page: N.A

View: 3415

The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Posted in Mathematics

Statistical Evidence

A Likelihood Paradigm

Author: Richard Royall

Publisher: Routledge

ISBN: 1351414550

Category: Mathematics

Page: 191

View: 6442

Interpreting statistical data as evidence, Statistical Evidence: A Likelihood Paradigm focuses on the law of likelihood, fundamental to solving many of the problems associated with interpreting data in this way. Statistics has long neglected this principle, resulting in a seriously defective methodology. This book redresses the balance, explaining why science has clung to a defective methodology despite its well-known defects. After examining the strengths and weaknesses of the work of Neyman and Pearson and the Fisher paradigm, the author proposes an alternative paradigm which provides, in the law of likelihood, the explicit concept of evidence missing from the other paradigms. At the same time, this new paradigm retains the elements of objective measurement and control of the frequency of misleading results, features which made the old paradigms so important to science. The likelihood paradigm leads to statistical methods that have a compelling rationale and an elegant simplicity, no longer forcing the reader to choose between frequentist and Bayesian statistics.
Posted in Mathematics