*An Intuitive Approach*

Author: Hajime Satō,Hajime Sato

Publisher: American Mathematical Soc.

ISBN: 9780821810460

Category: Mathematics

Page: 118

View: 1105

Skip to content
#
Search Results for: algebraic-topology-an-intuitive-approach-183-translations-of-mathematical-monographs

## Algebraic Topology

The single most difficult thing one faces when one begins to learn a new branch of mathematics is to get a feel for the mathematical sense of the subject. The purpose of this book is to help the aspiring reader acquire this essential common sense about algebraic topology in a short period of time. To this end, Sato leads the reader through simple but meaningful examples in concrete terms. Moreover, results are not discussed in their greatest possible generality, but in terms of the simplest and most essential cases. In response to suggestions from readers of the original edition of this book, Sato has added an appendix of useful definitions and results on sets, general topology, groups and such. He has also provided references.Topics covered include fundamental notions such as homeomorphisms, homotopy equivalence, fundamental groups and higher homotopy groups, homology and cohomology, fiber bundles, spectral sequences and characteristic classes. Objects and examples considered in the text include the torus, the Mobius strip, the Klein bottle, closed surfaces, cell complexes and vector bundles.
## C * -Algebras and Elliptic Operators in Differential Topology

The aim of this book is to present some applications of functional analysis and the theory of differential operators to the investigation of topological invariants of manifolds. The main topological application discussed in the book concerns the problem of the description of homotopy-invariant rational Pontryagin numbers of non-simply connected manifolds and the Novikov conjecture of homotopy invariance of higher signatures. The definition of higher signatures and the formulation of the Novikov conjecture are given in Chapter 3. In this chapter, the authors also give an overview of different approaches to the proof of the Novikov conjecture. First, there is the Mishchenko symmetric signature and the generalized Hirzebruch formulae and the Mishchenko theorem of homotopy invariance of higher signatures for manifolds whose fundamental groups have a classifying space, being a complete Riemannian non-positive curvature manifold. Then the authors present Solovyov's proof of the Novikov conjecture for manifolds with fundamental group isomorphic to a discrete subgroup of a linear algebraic group over a local field, based on the notion of the Bruhat-Tits building. Finally, the authors discuss the approach due to Kasparov based on the operator $KK$-theory and another proof of the Mishchenko theorem. In Chapter 4, they outline the approach to the Novikov conjecture due to Connes and Moscovici involving cyclic homology. That allows one to prove the conjecture in the case when the fundamental group is a (Gromov) hyperbolic group. The text provides a concise exposition of some topics from functional analysis (for instance, $C^*$-Hilbert modules, $K$-theory or $C^*$-bundles, Hermitian $K$-theory, Fredholm representations, $KK$-theory, and functional integration) from the theory of differential operators (pseudodifferential calculus and Sobolev chains over $C^*$-algebras), and from differential topology (characteristic classes). The book explains basic ideas of the subject and can serve as a course text for an introduction to the study of original works and special monographs.
## Graphs, Surfaces and Homology

Homology theory is a powerful algebraic tool that is at the centre of current research in topology and its applications. This accessible textbook will appeal to mathematics students interested in the application of algebra to geometrical problems, specifically the study of surfaces (sphere, torus, Mobius band, Klein bottle). In this introduction to simplicial homology - the most easily digested version of homology theory - the author studies interesting geometrical problems, such as the structure of two-dimensional surfaces and the embedding of graphs in surfaces, using the minimum of algebraic machinery and including a version of Lefschetz duality. Assuming very little mathematical knowledge, the book provides a complete account of the algebra needed (abelian groups and presentations), and the development of the material is always carefully explained with proofs given in full detail. Numerous examples and exercises are also included, making this an ideal text for undergraduate courses or for self-study.
## Cohomological Analysis of Partial Differential Equations and Secondary Calculus

This book is dedicated to fundamentals of a new theory, which is an analog of affine algebraic geometry for (nonlinear) partial differential equations. This theory grew up from the classical geometry of PDE's originated by S. Lie and his followers by incorporating some nonclassical ideas from the theory of integrable systems, the formal theory of PDE's in its modern cohomological form given by D. Spencer and H. Goldschmidt and differential calculus over commutative algebras (Primary Calculus). The main result of this synthesis is Secondary Calculus on diffieties, new geometrical objects which are analogs of algebraic varieties in the context of (nonlinear) PDE's. Secondary Calculus surprisingly reveals a deep cohomological nature of the general theory of PDE's and indicates new directions of its further progress. Recent developments in quantum field theory showed Secondary Calculus to be its natural language, promising a nonperturbative formulation of the theory. In addition to PDE's themselves, the author describes existing and potential applications of Secondary Calculus ranging from algebraic geometry to field theory, classical and quantum, including areas such as characteristic classes, differential invariants, theory of geometric structures, variational calculus, control theory, etc. This book, focused mainly on theoretical aspects, forms a natural dipole with Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Volume 182 in this same series, Translations of Mathematical Monographs, and shows the theory "in action".
## Geometry of Characteristic Classes

This is an inexpensive paper volume that will appeal to upper level students. Professor Morita is a world-class authority on this topic.
## American Book Publishing Record

## Books in Series

## Das Total Von Moduln und Ringen

## Ebene algebraische Kurven

## Frames and Locales

Until the mid-twentieth century, topological studies were focused on the theory of suitable structures on sets of points. The concept of open set exploited since the twenties offered an expression of the geometric intuition of a "realistic" place (spot, grain) of non-trivial extent. Imitating the behaviour of open sets and their relations led to a new approach to topology flourishing since the end of the fifties.It has proved to be beneficial in many respects. Neglecting points, only little information was lost, while deeper insights have been gained; moreover, many results previously dependent on choice principles became constructive. The result is often a smoother, rather than a more entangled, theory. No monograph of this nature has appeared since Johnstone's celebrated Stone Spaces in 1983. The present book is intended as a bridge from that time to the present. Most of the material appears here in book form for the first time or is presented from new points of view. Two appendices provide an introduction to some requisite concepts from order and category theories.
## Geometrische Methoden in der Invariantentheorie

In dieser Einführung geht es vor allem um die geometrischen Aspekte der Invariantentheorie. Die hauptsächliche Motivation bildet das Studium von Klassifikations- und Normalformenproblemen, die auch historisch der Ausgangspunkt für invariantentheoretische Untersuchungen waren.
## Topologie

## Poincarés Vermutung

## 1089 oder das Wunder der Zahlen

Das Buch beginnt mit einem alten Zaubertrick - Man nehme eine 3-stellige Zahl, etwa 782, kehre sie um, ziehe die kleinere von der größeren ab und addiere dazu die Umkehrung. Also - 782 - 287 = 495, dann 495 + 594. Und schon ist man mitten in der Wunderwelt der Mathematik, denn das Ergebnis ist immer - 1089. Mit solchen und vielen weiteren Beispielen aus Alltag, Geschichte und Wissenschaft gelingt es David Acheson, die faszinierende Welt der Mathematik zu erschließen - ein geistreicher Überblick, eine für jeden verständliche Einführung.
## Liebe und Mathematik

## Analysis II

Dem erfolgreichen Konzept von Analysis I folgend, wird auch im zweiten Teil dieses zweibändigen Analysis-Werkes viel Wert auf historische Zusammenhänge, Ausblicke und die Entwicklung der Analysis gelegt. Zu den Besonderheiten, die über den kanonischen Stoff des zweiten und dritten Semesters einer Analysisvorlesung hinausgehen, gehört das Lemma von Marston Morse. Die Grundtatsachen über die verschiedenen Integralbegriffe werden allesamt aus Sätzen über verallgemeinerte Limites (Moore-Smith-Konvergenz) abgeleitet. Die C?-Approximation von Funktionen (Friedrich Mollifiers) wird ebenso behandelt, wie die Theorie der absolut stetigen Funktionen. Bei den Fourierreihen wird die klassische Theorie in Weiterführung einer von Chernoff und Redheffer entwickelten Methode behandelt. Zahlreiche Beispiele, Übungsaufgaben und Anwendungen, z.B. aus der Physik und Astronomie runden dieses Lehrbuch ab.
## Collected papers

## Mathematical Reviews

## Mathematische Bildung und neue Technologien

Full PDF eBook Download Free

*An Intuitive Approach*

Author: Hajime Satō,Hajime Sato

Publisher: American Mathematical Soc.

ISBN: 9780821810460

Category: Mathematics

Page: 118

View: 1105

Author: I_U_ri_ Petrovich Solov_v Evgeni_ Vadimovich Troit_s_ki_

Publisher: American Mathematical Soc.

ISBN: 9780821897935

Category:

Page: N.A

View: 5520

Author: Peter Giblin

Publisher: Cambridge University Press

ISBN: 1139491172

Category: Mathematics

Page: N.A

View: 7674

Author: A. M. Vinogradov

Publisher: American Mathematical Soc.

ISBN: 9780821897997

Category:

Page: N.A

View: 4305

Author: Shigeyuki Morita

Publisher: American Mathematical Soc.

ISBN: 0821821393

Category: Mathematics

Page: 185

View: 6924

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Books

Page: N.A

View: 8949

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Monographic series

Page: N.A

View: 2469

Author: Wolfgang Schneider

Publisher: N.A

ISBN: 9783889270368

Category: Modules (Algebra)

Page: 59

View: 4807

Author: Egbert Brieskorn,Horst Knörrer

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: 964

View: 7398

*Topology without points*

Author: Jorge Picado,Aleš Pultr

Publisher: Springer Science & Business Media

ISBN: 3034801548

Category: Mathematics

Page: 398

View: 4131

Author: Hanspeter Kraft

Publisher: Springer-Verlag

ISBN: 3663101436

Category: Technology & Engineering

Page: 308

View: 4755

Author: K. Jänich

Publisher: Springer-Verlag

ISBN: 3662225549

Category: Mathematics

Page: 215

View: 3674

*die Geschichte eines mathematischen Abenteuers*

Author: Donal O'Shea

Publisher: N.A

ISBN: 9783596176632

Category:

Page: 376

View: 5518

*eine Reise in die Welt der Mathematik*

Author: David J. Acheson

Publisher: N.A

ISBN: 9783866470200

Category:

Page: 189

View: 6270

*Im Herzen einer verborgenen Wirklichkeit*

Author: Edward Frenkel

Publisher: Springer-Verlag

ISBN: 3662434210

Category: Mathematics

Page: 317

View: 9645

Author: Wolfgang Walter

Publisher: Springer-Verlag

ISBN: 3642967922

Category: Mathematics

Page: 398

View: 8763

Author: Emil Artin

Publisher: Springer

ISBN: N.A

Category: Mathematics

Page: 560

View: 9624

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 2187

*Vorträge beim 8. Internationalen Symposium zur Didaktik der Mathematik Universität Klagenfurt, 28.9. – 2.10.1998*

Author: Gert Kadunz,Günther Ossimitz,Werner Peschek,Edith Schneider,Bernard Winkelmann

Publisher: Springer-Verlag

ISBN: 3322901491

Category: Technology & Engineering

Page: 392

View: 569