Commutative Algebra

Durham 1981

Author: R. Y. Sharp

Publisher: Cambridge University Press

ISBN: 0521271258

Category: Mathematics

Page: 250

View: 1877

This book is concerned with the research conducted in the late 1970s and early 1980s in the theory of commutative Neotherian rings. It consists of articles by invited speakers at the Symposium of Commutative Algebra held at the University of Durham in July 1981; these articles are all based on lectures delivered at the Symposium. The purpose of this book is to provide a record of at least some aspects of the Symposium, which several of the world leaders in the field attended. Several articles are included which provide surveys, incorporating historical perspective, details of progress made and indications of possible future lines of investigation. The book will be of interest to scholars of commutative and local algebra.
Posted in Mathematics

Algèbre Locale, Multiplicités

Cours au Collège de France, 1957 - 1958

Author: Jean-Pierre Serre

Publisher: Springer Science & Business Media

ISBN: 9783540070283

Category: Mathematics

Page: 160

View: 8119

Chapitre I. 1DIAUX PIlEMIEIS IT LOCALISATION I I. Wotationa et definitions I 2. Lemme de Bakay. . . . 2 3. Localisation • • • 4. Anneaux et 80dules noethiriens 2 5. Spectre•••••• 3 4 6. Le cas noetherien. 4 7. Ideaux pre. iers associe. Chapitre 11. OUTILS IT SOUTES A) Filtr·ations et graduations. 8 I. Anneaux et modules filtres • 8 2. Topologie definie par UDe filtration 9 10 3. Coapletion des modules filtres • • • II 4. Anneaux et modules graduis • • • • • 5. au tout redevient noethirien; filtrations ~-adiques. 15 20 6. Modules differentiels filtres•••••••••••• B) Polynoaes de Hilbert-SamueL ••••••••••• 26 I. Rappel sur les polynOmes Ii valeurs entieres•••• 26 27 2. Fonctions additives sur les categories de modules. 29 3. Le polynOme caractiristique de Hilbert 32 4. Les invariants de Hilbert-Samuel Chapitre 111. T1I£ORlE DE LA DDlE!ISION A) Dimension des extensions. entieres. 38 I. Definitions. • • • • • • • • • • • • 38 2. Le premier theore- de Cohen-Seidenberg. 39 3. Le second theoreme de Cohen-Seidenberg • 4I B) Dimension dans les anneaux noetheriens. 43 I. Dimension d'un module. • • • 43 2. Le cas semi-local noetherien 44 3. Syste. es de parametres 47 C) Anneaux normaux 48 I. caracterisation des anneaux normaux. 48 2. Proprietes des anneaux noraaux 51 3. Fermeture integrale. 53 D) Anneaux de polynomes. • • • • • 54 I.
Posted in Mathematics

D-Modules, Perverse Sheaves, and Representation Theory

Author: Ryoshi Hotta,Toshiyuki Tanisaki

Publisher: Springer Science & Business Media

ISBN: 081764363X

Category: Mathematics

Page: 412

View: 3195

D-modules continues to be an active area of stimulating research in such mathematical areas as algebraic, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, representation theory.
Posted in Mathematics

Trends in Singularities

Author: Anatoly Libgober,Mihai Tibar

Publisher: Birkhäuser

ISBN: 3034881614

Category: Mathematics

Page: 246

View: 7861

The collection of papers in this volume represents recent advances in the under standing of the geometry and topology of singularities. The book covers a broad range of topics which are in the focus of contemporary singularity theory. Its idea emerged during two Singularities workshops held at the University of Lille (USTL) in 1999 and 2000. Due to the breadth of singularity theory, a single volume can hardly give the complete picture of today's progress. Nevertheless, this collection of papers provides a good snapshot of what is the state of affairs in the field, at the turn of the century. Several papers deal with global aspects of singularity theory. Classification of fam ilies of plane curves with prescribed singularities were among the first problems in algebraic geometry. Classification of plane cubics was known to Newton and classification of quartics was achieved by Klein at the end of the 19th century. The problem of classification of curves of higher degrees was addressed in numerous works after that. In the paper by Artal, Carmona and Cogolludo, the authors de scribe irreducible sextic curves having a singular point of type An (n > 15) and a large (Le. , :::: 18) sum of Milnor numbers of other singularities. They have discov ered many interesting properties of these families. In particular they have found new examples of so-called Zariski pairs, i. e.
Posted in Mathematics

Mathematical Reviews

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 5277

Posted in Mathematics

L'Enseignement mathématique

Author: Université de Genève. Institut de mathématiques

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 3059

Vols. for 1965- include a separately paged section, Bulletin bibliographique.
Posted in Mathematics

Mathematica Scandinavica

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 1585

Posted in Mathematics

Local Analytic Geometry

Author: Shreeram Shankar Abhyankar

Publisher: N.A

ISBN: 9780120419500

Category: Geometry, Analytic

Page: 484

View: 7794

Posted in Geometry, Analytic

Ebene algebraische Kurven

Author: Egbert Brieskorn,Horst Knörrer

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: 964

View: 3593

Posted in Mathematics

Liebe und Mathematik

Im Herzen einer verborgenen Wirklichkeit

Author: Edward Frenkel

Publisher: Springer-Verlag

ISBN: 3662434210

Category: Mathematics

Page: 317

View: 9702

Posted in Mathematics

Moderne Algebra

Author: Bartel Eckmann L. Van der van der Waerden,Emil Artin,Emmy Noether

Publisher: Springer-Verlag

ISBN: 3662364344

Category: Mathematics

Page: 274

View: 2769

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
Posted in Mathematics

Gesammelte Abhandlungen

Author: Oswald Teichmüller,Lars Valerian Ahlfors,Frederick W. Gehring

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: 751

View: 4632

Posted in Mathematics

Bernhard Riemann 1826–1866

Wendepunkte in der Auffassung der Mathematik

Author: Detlef Laugwitz

Publisher: Springer-Verlag

ISBN: 3034889836

Category: Mathematics

Page: 348

View: 5223

Das Riemannsche Integral lernen schon die Schüler kennen, die Theorien der reellen und der komplexen Funktionen bauen auf wichtigen Begriffsbildungen und Sätzen Riemanns auf, die Riemannsche Geometrie ist für Einsteins Gravitationstheorie und ihre Erweiterungen unentbehrlich, und in der Zahlentheorie ist die berühmte Riemannsche Vermutung noch immer offen. Riemann und sein um fünf Jahre jüngerer Freund Richard Dedekind sahen sich als Schüler von Gauss und Dirichlet. Um die Mitte des 19. Jahrhunderts leiteten sie den Übergang zur "modernen Mathematik" ein, der eine in Analysis und Geometrie, der andere in der Algebra mit der Hinwendung zu Mengen und Strukturen. Dieses Buch ist der erste Versuch, Riemanns wissenschaftliches Werk unter einem einheitlichen Gesichtspunkt zusammenzufassend darzustellen. Riemann gilt als einer der Philosophen unter den Mathematikern. Er stellte das Denken in Begriffen neben die zuvor vorherrschende algorithmische Auffassung von der Mathematik, welche die Gegenstände der Untersuchung, in Formeln und Figuren, in Termumformungen und regelhaften Konstruktionen als die allein legitimen Methoden sah. David Hilbert hat als Riemanns Grundsatz herausgestellt, die Beweise nicht durch Rechnung, sondern lediglich durch Gedanken zu zwingen. Hermann Weyl sah als das Prinzip Riemanns in Mathematik und Physik, "die Welt als das erkenntnistheoretische Motiv..., die Welt aus ihrem Verhalten im un- endlich kleinen zu verstehen."
Posted in Mathematics

Lehr- und Wanderjahre eines Mathematikers

Aus dem Französischen von Theresia Übelhör

Author: André Weil

Publisher: Springer-Verlag

ISBN: 3034850476

Category: Science

Page: 212

View: 703

Mein Leben, oder zumindest das, was diesen Namen verdient -ein außer gewöhnlich glückliches Leben mit einigen Schicksalsschlägen -erstreckte sich auf die Zeit zwischen dem 6. Mai 1906, dem Tag meiner Geburt, und dem 24. Mai 1986, dem Todestag meiner Frau und Gefährtin Eveline. Wenn auf diesen Seiten, die ihr gewidmet sind, von meiner Frau recht wenig die Rede sein wird, heißt das nicht, daß sie in meinem Leben und in meinen Gedanken einen geringen Platz eingenommen hätte. Sie war im Gegenteil, beinahe vom Tag unserer ersten Begegnung an, so eng damit verwoben, daß von mir oder von ihr zu sprechen ein und dasselbe ist. Ihre Anwesenheit beziehungsweise ihre Abwesenheit bestimmte die Textur meines ganzen Lebens. Was könnte ich anderes dazu sagen, als daß unsere Ehe eine von jenen war, die La Rochefoucauld Lügen strafen? »Fulsere vere candidi mihi soles . . . . « Ebenso wird meine Schwester kaum erwähnt werden. Es ist schon lange her, daß ich meine Erinnerungen an sie Simone Petrement mitgeteilt habe, die sie in ihre gute Biographie La vie de Simone Weil einfließen ließ, wo man viele Einzelheiten über unsere gemeinsame Kindheit erfahren kann, und es wäre unnötig, dies hier zu wiederholen. Als Kinder waren wir unzertrennlich, aber ich war der große Bruder und sie die kleine Schwester. Später waren wir selten zusammen, und meist sprachen wir in scherzhaftem Ton miteinander, denn sie hatte ein fröhliches und humorvolles Naturell, wie alle, die sie kannten, bestätigt haben.
Posted in Science

GAMMA

Eulers Konstante, Primzahlstrände und die Riemannsche Vermutung

Author: Julian Havil

Publisher: Springer-Verlag

ISBN: 3540484965

Category: Mathematics

Page: 302

View: 1814

Jeder kennt p = 3,14159..., viele kennen e = 2,71828..., einige i. Und dann? Die "viertwichtigste" Konstante ist die Eulersche Zahl g = 0,5772156... - benannt nach dem genialen Leonhard Euler (1707-1783). Bis heute ist unbekannt, ob g eine rationale Zahl ist. Das Buch lotet die "obskure" Konstante aus. Die Reise beginnt mit Logarithmen und der harmonischen Reihe. Es folgen Zeta-Funktionen und Eulers wunderbare Identität, Bernoulli-Zahlen, Madelungsche Konstanten, Fettfinger in Wörterbüchern, elende mathematische Würmer und Jeeps in der Wüste. Besser kann man nicht über Mathematik schreiben. Was Julian Havil dazu zu sagen hat, ist spektakulär.
Posted in Mathematics