R für Data Science

Daten importieren, bereinigen, umformen, modellieren und visualisieren

Author: Hadley Wickham,Garrett Grolemund

Publisher: O'Reilly

ISBN: 3960101546

Category: Computers

Page: 502

View: 3036

Lernen Sie, wie Sie mit R Ihre Rohdaten in Erkenntnisse und Wissen umwandeln. Dieses Buch führt Sie ein in R, RStudio und tidyverse – eine Sammlung von R-Paketen, die ineinandergreifen, um Data Science schnell, flüssig und komfortabel zu machen. R für Data Science ist geeignet für Leser ohne vorherige Programmierkenntnisse und zielt darauf ab, dass Sie Techniken der Data Science so schnell wie möglich in der Praxis umsetzen können. Die Autoren Hadley Wickham und Garrett Grolemund zeigen, wie Sie Daten importieren, aufbereiten, untersuchen und modellieren und wie Sie die Ergebnisse kommunizieren können. So bekommen Sie einen vollständigen Überblick über den Data-Science-Zyklus und die Tools, die für die Detailarbeit erforderlich sind.
Posted in Computers

Advanced R

Author: Hadley Wickham

Publisher: CRC Press

ISBN: 1498759807

Category: Mathematics

Page: 476

View: 9283

An Essential Reference for Intermediate and Advanced R Programmers Advanced R presents useful tools and techniques for attacking many types of R programming problems, helping you avoid mistakes and dead ends. With more than ten years of experience programming in R, the author illustrates the elegance, beauty, and flexibility at the heart of R. The book develops the necessary skills to produce quality code that can be used in a variety of circumstances. You will learn: The fundamentals of R, including standard data types and functions Functional programming as a useful framework for solving wide classes of problems The positives and negatives of metaprogramming How to write fast, memory-efficient code This book not only helps current R users become R programmers but also shows existing programmers what’s special about R. Intermediate R programmers can dive deeper into R and learn new strategies for solving diverse problems while programmers from other languages can learn the details of R and understand why R works the way it does.
Posted in Mathematics

R für Dummies

Author: Andrie de Vries,Joris Meys

Publisher: John Wiley & Sons

ISBN: 3527812520

Category: Computers

Page: 414

View: 3197

Wollen Sie auch die umfangreichen Möglichkeiten von R nutzen, um Ihre Daten zu analysieren, sind sich aber nicht sicher, ob Sie mit der Programmiersprache wirklich zurechtkommen? Keine Sorge - dieses Buch zeigt Ihnen, wie es geht - selbst wenn Sie keine Vorkenntnisse in der Programmierung oder Statistik haben. Andrie de Vries und Joris Meys zeigen Ihnen Schritt für Schritt und anhand zahlreicher Beispiele, was Sie alles mit R machen können und vor allem wie Sie es machen können. Von den Grundlagen und den ersten Skripten bis hin zu komplexen statistischen Analysen und der Erstellung aussagekräftiger Grafiken. Auch fortgeschrittenere Nutzer finden in diesem Buch viele Tipps und Tricks, die Ihnen die Datenauswertung erleichtern.
Posted in Computers

R in a Nutshell

Author: Joseph Adler

Publisher: O'Reilly Germany

ISBN: 3897216507

Category: Computers

Page: 768

View: 6069

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.
Posted in Computers

Handbook of Regression Methods

Author: Derek Scott Young

Publisher: CRC Press

ISBN: 1351650742

Category: Mathematics

Page: 632

View: 9317

This book is intended to read like a handbook for regression methods. It provides a broad survey of both standard and non-standard regression models and topics. Thus, the treatment includes topics that would typically be covered in a master's-level statistics course in regression (e.g., simple/multiple linear regression, residual analysis, and ANOVA; as well as more specialized topics like biased regression procedures, multivariate regression, and count regression models).
Posted in Mathematics

Learning Bayesian Models with R

Author: Dr. Hari M. Koduvely

Publisher: Packt Publishing Ltd

ISBN: 1783987618

Category: Computers

Page: 168

View: 3402

Become an expert in Bayesian Machine Learning methods using R and apply them to solve real-world big data problems About This Book Understand the principles of Bayesian Inference with less mathematical equations Learn state-of-the art Machine Learning methods Familiarize yourself with the recent advances in Deep Learning and Big Data frameworks with this step-by-step guide Who This Book Is For This book is for statisticians, analysts, and data scientists who want to build a Bayes-based system with R and implement it in their day-to-day models and projects. It is mainly intended for Data Scientists and Software Engineers who are involved in the development of Advanced Analytics applications. To understand this book, it would be useful if you have basic knowledge of probability theory and analytics and some familiarity with the programming language R. What You Will Learn Set up the R environment Create a classification model to predict and explore discrete variables Get acquainted with Probability Theory to analyze random events Build Linear Regression models Use Bayesian networks to infer the probability distribution of decision variables in a problem Model a problem using Bayesian Linear Regression approach with the R package BLR Use Bayesian Logistic Regression model to classify numerical data Perform Bayesian Inference on massively large data sets using the MapReduce programs in R and Cloud computing In Detail Bayesian Inference provides a unified framework to deal with all sorts of uncertainties when learning patterns form data using machine learning models and use it for predicting future observations. However, learning and implementing Bayesian models is not easy for data science practitioners due to the level of mathematical treatment involved. Also, applying Bayesian methods to real-world problems requires high computational resources. With the recent advances in computation and several open sources packages available in R, Bayesian modeling has become more feasible to use for practical applications today. Therefore, it would be advantageous for all data scientists and engineers to understand Bayesian methods and apply them in their projects to achieve better results. Learning Bayesian Models with R starts by giving you a comprehensive coverage of the Bayesian Machine Learning models and the R packages that implement them. It begins with an introduction to the fundamentals of probability theory and R programming for those who are new to the subject. Then the book covers some of the important machine learning methods, both supervised and unsupervised learning, implemented using Bayesian Inference and R. Every chapter begins with a theoretical description of the method explained in a very simple manner. Then, relevant R packages are discussed and some illustrations using data sets from the UCI Machine Learning repository are given. Each chapter ends with some simple exercises for you to get hands-on experience of the concepts and R packages discussed in the chapter. The last chapters are devoted to the latest development in the field, specifically Deep Learning, which uses a class of Neural Network models that are currently at the frontier of Artificial Intelligence. The book concludes with the application of Bayesian methods on Big Data using the Hadoop and Spark frameworks. Style and approach The book first gives you a theoretical description of the Bayesian models in simple language, followed by details of its implementation in the R package. Each chapter has illustrations for the use of Bayesian model and the corresponding R package, using data sets from the UCI Machine Learning repository. Each chapter also contains sufficient exercises for you to get more hands-on practice.
Posted in Computers

Der Pragmatische Programmierer

Author: Andrew Hunt,David Thomas

Publisher: N.A

ISBN: 9783446223097

Category:

Page: 307

View: 4856

Posted in

R Graphics, Second Edition

Author: Paul Murrell

Publisher: CRC Press

ISBN: 1439831777

Category: Computers

Page: 546

View: 3391

Extensively updated to reflect the evolution of statistics and computing, the second edition of the bestselling R Graphics comes complete with new packages and new examples. Paul Murrell, widely known as the leading expert on R graphics, has developed an in-depth resource that helps both neophyte and seasoned users master the intricacies of R graphics. New in the Second Edition Updated information on the core graphics engine, the traditional graphics system, the grid graphics system, and the lattice package A new chapter on the ggplot2 package New chapters on applications and extensions of R Graphics, including geographic maps, dynamic and interactive graphics, and node-and-edge graphs Organized into five parts, R Graphics covers both "traditional" and newer, R-specific graphics systems. The book reviews the graphics facilities of the R language and describes R’s powerful grid graphics system. It then covers the graphics engine, which represents a common set of fundamental graphics facilities, and provides a series of brief overviews of the major areas of application for R graphics and the major extensions of R graphics.
Posted in Computers

Basics of Matrix Algebra for Statistics with R

Author: Nick Fieller

Publisher: CRC Press

ISBN: 1315360055

Category: Mathematics

Page: 248

View: 3253

A Thorough Guide to Elementary Matrix Algebra and Implementation in R Basics of Matrix Algebra for Statistics with R provides a guide to elementary matrix algebra sufficient for undertaking specialized courses, such as multivariate data analysis and linear models. It also covers advanced topics, such as generalized inverses of singular and rectangular matrices and manipulation of partitioned matrices, for those who want to delve deeper into the subject. The book introduces the definition of a matrix and the basic rules of addition, subtraction, multiplication, and inversion. Later topics include determinants, calculation of eigenvectors and eigenvalues, and differentiation of linear and quadratic forms with respect to vectors. The text explores how these concepts arise in statistical techniques, including principal component analysis, canonical correlation analysis, and linear modeling. In addition to the algebraic manipulation of matrices, the book presents numerical examples that illustrate how to perform calculations by hand and using R. Many theoretical and numerical exercises of varying levels of difficulty aid readers in assessing their knowledge of the material. Outline solutions at the back of the book enable readers to verify the techniques required and obtain numerical answers. Avoiding vector spaces and other advanced mathematics, this book shows how to manipulate matrices and perform numerical calculations in R. It prepares readers for higher-level and specialized studies in statistics.
Posted in Mathematics

Programmieren mit R

Author: Uwe Ligges

Publisher: Springer-Verlag

ISBN: 3540799982

Category: Computers

Page: 251

View: 4451

R ist eine objektorientierte und interpretierte Sprache und Programmierumgebung für Datenanalyse und Grafik. Ausführlich führt der Autor in die Grundlagen ein und vermittelt eingängig die Struktur der Sprache. So ermöglicht er Lesern den leichten Einstieg: eigene Methoden umsetzen, Objektklassen definieren und Pakete aus Funktionen und zugehöriger Dokumentation zusammenstellen. Detailliert beschreibt er die enormen Grafikfähigkeiten von R. Für alle, die R als flexibles Werkzeug zur Datenanalyse und -visualisierung einsetzen. In 2. Auflage mit vielen Verbesserungen und Neuerungen von R-2.3.x und weiteren von Lesern gewünschten Ergänzungen.
Posted in Computers

Statistik II für Dummies

Author: Deborah J. Rumsey

Publisher: John Wiley & Sons

ISBN: 3527669248

Category: Mathematics

Page: 372

View: 7292

Vom Absolutrang bis zum Zweifach-Varianzanalysemodell – alles, was Sie über weiterführende Statistik wissen sollten Es gibt Qualen, große Qualen und Statistik, so sehen es viele Studenten. Mit diesem Buch lernen Sie weiterführende Statistik so leicht wie möglich. Deborah Rumsey zeigt Ihnen, wie Sie Varianzanalysen und Chi-Quadrat-Tests berechnen, wie Sie mit Regressionen arbeiten, ein Modell erstellen, Korrelationen bilden, nichtparametrische Prozeduren durchführen und vieles mehr. Aber auch die Grundlagen der Statistik bleiben nicht außen vor und deshalb erklärt Ihnen die Autorin, was Sie zu Mittelwerten, Vertrauensintervallen und Co wissen sollten. So lernen Sie die Methoden, die Sie brauchen, und erhalten das Handwerkszeug, um erfolgreich Ihre Statistikprüfungen zu bestehen. Sie erfahren: • Wie Sie mit multiplen Regressionen umgehen • Was es mit dem Vorzeichentest und dem Vorzeichenrangtest auf sich hat • Wie Sie sich innerhalb der statistischen Techniken zurechtfinden • Was das richtige Regressionsmodell für Ihre Analyse ist • Wie Regression und ANOVA zusammenhängen
Posted in Mathematics

Statistik angewandt

Datenanalyse ist (k)eine Kunst mit dem R Commander

Author: Franz Kronthaler

Publisher: Springer-Verlag

ISBN: 3662471183

Category: Business & Economics

Page: 319

View: 2063

Informationen aus Daten zu gewinnen und einen Datensatz systematisch zu analysieren ist (k)eine Kunst. Für die aktuelle Version von „Statistik angewandt“ wurden zahlreiche Features ergänzt, um es dem Leser noch einfacher zu machen, Datensätze systematisch zu analysieren. Hilfreiche Elemente sind die Checkpoints, in denen die wichtigsten Punkte jedes Kapitels kurz zusammengefasst sind. In der Rubrik Freak-Wissen werden weiterführende Aspekte angesprochen, um Lust auf mehr zu machen. Zahlreiche Anwendungen und Lösungen sowie weitere Datensätze stehen auf der Internetplattform des Autors zur Verfügung. Alle Beispiele werden mit Hand und R bzw. dem R Commander gerechnet. Das Buch gibt eine einfache Einführung in eine professionelle Statistiksoftware.
Posted in Business & Economics

Statistical Computing with R

Author: Maria L. Rizzo

Publisher: CRC Press

ISBN: 1584885459

Category: Mathematics

Page: 416

View: 5747

Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. One of the first books on these topics to feature R, Statistical Computing with R covers the traditional core material of computational statistics, with an emphasis on using the R language via an examples-based approach. Suitable for an introductory course in computational statistics or for self-study, it includes R code for all examples and R notes to help explain the R programming concepts. After an overview of computational statistics and an introduction to the R computing environment, the book reviews some basic concepts in probability and classical statistical inference. Each subsequent chapter explores a specific topic in computational statistics. These chapters cover the simulation of random variables from probability distributions, the visualization of multivariate data, Monte Carlo integration and variance reduction methods, Monte Carlo methods in inference, bootstrap and jackknife, permutation tests, Markov chain Monte Carlo (MCMC) methods, and density estimation. The final chapter presents a selection of examples that illustrate the application of numerical methods using R functions. Focusing on implementation rather than theory, this text serves as a balanced, accessible introduction to computational statistics and statistical computing.
Posted in Mathematics

Stichprobenverfahren

Author: William G. Cochran

Publisher: Walter de Gruyter

ISBN: 3110823004

Category: Reference

Page: 474

View: 2980

Posted in Reference

Testing R Code

Author: Richard Cotton

Publisher: CRC Press

ISBN: 1315350513

Category: Computers

Page: 196

View: 6716

Learn how to write R code with fewer bugs. The problem with programming is that you are always one typo away from writing something silly. Likewise with data analysis, a small mistake in your model can lead to a big mistake in your results. Combining the two disciplines means that it is all too easy for a missed minus sign to generate a false prediction that you don’t spot until it’s too late. Testing is the only way to be sure that your code, and your results, are correct. Testing R Code teaches you how to perform development-time testing using the testthat package, allowing you to ensure that your code works as intended. The book also teaches run-time testing using the assertive package; enabling your users to correctly run your code. After beginning with an introduction to testing in R, the book explores more advanced cases such as integrating tests into R packages; testing code that accesses databases; testing C++ code with Rcpp; and testing graphics. Each topic is explained with real-world examples, and has accompanying exercises for readers to practise their skills — only a small amount of experience with R is needed to get started!
Posted in Computers

Reproducible Finance with R

Code Flows and Shiny Apps for Portfolio Analysis

Author: Jonathan K. Regenstein, Jr.

Publisher: CRC Press

ISBN: 1351052608

Category: Mathematics

Page: 230

View: 2405

Reproducible Finance with R: Code Flows and Shiny Apps for Portfolio Analysis is a unique introduction to data science for investment management that explores the three major R/finance coding paradigms, emphasizes data visualization, and explains how to build a cohesive suite of functioning Shiny applications. The full source code, asset price data and live Shiny applications are available at reproduciblefinance.com. The ideal reader works in finance or wants to work in finance and has a desire to learn R code and Shiny through simple, yet practical real-world examples. The book begins with the first step in data science: importing and wrangling data, which in the investment context means importing asset prices, converting to returns, and constructing a portfolio. The next section covers risk and tackles descriptive statistics such as standard deviation, skewness, kurtosis, and their rolling histories. The third section focuses on portfolio theory, analyzing the Sharpe Ratio, CAPM, and Fama French models. The book concludes with applications for finding individual asset contribution to risk and for running Monte Carlo simulations. For each of these tasks, the three major coding paradigms are explored and the work is wrapped into interactive Shiny dashboards. ? ?
Posted in Mathematics

Analyzing Baseball Data with R

Author: Max Marchi,Jim Albert

Publisher: CRC Press

ISBN: 1466570237

Category: Mathematics

Page: 334

View: 9349

With its flexible capabilities and open-source platform, R has become a major tool for analyzing detailed, high-quality baseball data. Analyzing Baseball Data with R provides an introduction to R for sabermetricians, baseball enthusiasts, and students interested in exploring the rich sources of baseball data. It equips readers with the necessary skills and software tools to perform all of the analysis steps, from gathering the datasets and entering them in a convenient format to visualizing the data via graphs to performing a statistical analysis. The authors first present an overview of publicly available baseball datasets and a gentle introduction to the type of data structures and exploratory and data management capabilities of R. They also cover the traditional graphics functions in the base package and introduce more sophisticated graphical displays available through the lattice and ggplot2 packages. Much of the book illustrates the use of R through popular sabermetrics topics, including the Pythagorean formula, runs expectancy, career trajectories, simulation of games and seasons, patterns of streaky behavior of players, and fielding measures. Each chapter contains exercises that encourage readers to perform their own analyses using R. All of the datasets and R code used in the text are available online. This book helps readers answer questions about baseball teams, players, and strategy using large, publically available datasets. It offers detailed instructions on downloading the datasets and putting them into formats that simplify data exploration and analysis. Through the book’s various examples, readers will learn about modern sabermetrics and be able to conduct their own baseball analyses.
Posted in Mathematics

Maschinelles Lernen

Author: Ethem Alpaydın

Publisher: Oldenbourg Verlag

ISBN: 9783486581140

Category:

Page: 440

View: 9662

Unter maschinellem Lernen versteht man die kunstliche Generierung von Wissen aus Erfahrung. Das vorliegende Buch diskutiert Methoden aus den Bereichen Statistik, Mustererkennung etc. und versucht, die unterschiedlichen Ansatze zu kombinieren, um moglichst effiziente Losungen zu finden."
Posted in

Computational Actuarial Science with R

Author: Arthur Charpentier

Publisher: CRC Press

ISBN: 1498759823

Category: Business & Economics

Page: 656

View: 7352

A Hands-On Approach to Understanding and Using Actuarial Models Computational Actuarial Science with R provides an introduction to the computational aspects of actuarial science. Using simple R code, the book helps you understand the algorithms involved in actuarial computations. It also covers more advanced topics, such as parallel computing and C/C++ embedded codes. After an introduction to the R language, the book is divided into four parts. The first one addresses methodology and statistical modeling issues. The second part discusses the computational facets of life insurance, including life contingencies calculations and prospective life tables. Focusing on finance from an actuarial perspective, the next part presents techniques for modeling stock prices, nonlinear time series, yield curves, interest rates, and portfolio optimization. The last part explains how to use R to deal with computational issues of nonlife insurance. Taking a do-it-yourself approach to understanding algorithms, this book demystifies the computational aspects of actuarial science. It shows that even complex computations can usually be done without too much trouble. Datasets used in the text are available in an R package (CASdatasets).
Posted in Business & Economics