A Mathematical Introduction to Logic

Author: Herbert Enderton,Herbert B. Enderton

Publisher: Elsevier

ISBN: 0080496466

Category: Mathematics

Page: 317

View: 7793

A Mathematical Introduction to Logic, Second Edition, offers increased flexibility with topic coverage, allowing for choice in how to utilize the textbook in a course. The author has made this edition more accessible to better meet the needs of today's undergraduate mathematics and philosophy students. It is intended for the reader who has not studied logic previously, but who has some experience in mathematical reasoning. Material is presented on computer science issues such as computational complexity and database queries, with additional coverage of introductory material such as sets. * Increased flexibility of the text, allowing instructors more choice in how they use the textbook in courses. * Reduced mathematical rigour to fit the needs of undergraduate students
Posted in Mathematics

Einführung in die mathematische Philosophie

Author: Bertrand Russell

Publisher: N.A

ISBN: 3787321020

Category: Philosophy

Page: 237

View: 9903

Dem Versuch, die These zu stützen, daß Logik und Mathematik eins seien, hat Russell mehrere Bücher gewidmet, unter anderem das dreibändige, gemeinsam mit A. N. Whitehead verfaßte Werk "Principia Mathematica" (1910-1913). Die "Einführung in die mathematische Philosophie" faßt die Ergebnisse dieser Untersuchungen zusammen, ohne Kenntnisse der mathematischen Symbolik vorauszusetzen. Sie ist zuweilen und mit Recht "eine bewundernswerte Exposition des Monumentalwerks Principia Mathematica" genannt worden; und sie ist zugleich etwas anderes, insofern sie eine relativ eigenständige Einführung in die Grundlagen der Mathematik und der Erkenntnistheorie darstellt.Das Buch entstand 1918 im Gefängnis von Brixton, wo Russell eine sechsmonatige Haftstrafe für seine pazifistische Tätigkeit während des 1. Weltkrieges absaß. Es ist sehr anregend zu lesen, wie beinahe alles, was Bertrand Russell geschrieben hat, und es ist ein Buch von der Art, wie es nur jemand wie Russell schreiben kann, wenn er im Gefängnis sitzt und keine Hilfsmittel hat und sich daher entschließt, allen technischen Ballast abzustreifen. Anders als die heute üblichen Texte im Bereich der Philosophie der Mathematik läßt Russell seine Leser immer an seinem Denken teilhaben, an seinen Vermutungen und Irrtümern und an der Begeisterung, die er bei der Beschäftigung mit seinem Gegenstand empfindet. Da er einer der herausragenden Protagonisten des modernen wissenschaftlichen Empirismus und einer der Begründer der heute dominierenden Philosophie der Mathematik ist, gewinnt man auf diese Weise aus seinen Schriften einen einzigartigen Einblick in die Wechselfälle und Ideen der erkenntnistheoretischen und logischen Diskussionen dieses Jahrhunderts.Die Ausgabe bietet eine revidierte Fassung der deutschen Übersetzung des in den 20er Jahren prominenten Mathematikers E. J. Gumbel sowie W. Gordon.
Posted in Philosophy

Introduction to Mathematical Logic, Fourth Edition

Author: Elliott Mendelson

Publisher: CRC Press

ISBN: 9780412808302

Category: Mathematics

Page: 440

View: 3954

The Fourth Edition of this long-established text retains all the key features of the previous editions, covering the basic topics of a solid first course in mathematical logic. This edition includes an extensive appendix on second-order logic, a section on set theory with urlements, and a section on the logic that results when we allow models with empty domains. The text contains numerous exercises and an appendix furnishes answers to many of them. Introduction to Mathematical Logic includes: propositional logic first-order logic first-order number theory and the incompleteness and undecidability theorems of Gödel, Rosser, Church, and Tarski axiomatic set theory theory of computability The study of mathematical logic, axiomatic set theory, and computability theory provides an understanding of the fundamental assumptions and proof techniques that form basis of mathematics. Logic and computability theory have also become indispensable tools in theoretical computer science, including artificial intelligence. Introduction to Mathematical Logic covers these topics in a clear, reader-friendly style that will be valued by anyone working in computer science as well as lecturers and researchers in mathematics, philosophy, and related fields.
Posted in Mathematics

Principia Mathematica.

Author: Alfred North Whitehead,Bertrand Russell

Publisher: N.A


Category: Logic, Symbolic and mathematical

Page: 167

View: 9061

Posted in Logic, Symbolic and mathematical

An Introduction to Mathematical Logic

Author: Richard E. Hodel

Publisher: Courier Corporation

ISBN: 0486497852

Category: Mathematics

Page: 491

View: 8486

This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.
Posted in Mathematics

An Introduction to Symbolic Logic

Author: Langer

Publisher: Courier Corporation

ISBN: 9780486601649

Category: Mathematics

Page: 384

View: 2673

Famous classic has introduced countless readers to symbolic logic with its thorough and precise exposition. Starts with simple symbols and conventions and concludes with the Boole-Schroeder and Russell-Whitehead systems. No special knowledge of mathematics necessary. "One of the clearest and simplest introductions to a subject which is very much alive." — Mathematics Gazette.
Posted in Mathematics

An Introduction to Mathematical Logic and Type Theory

Author: Peter B. Andrews

Publisher: Springer Science & Business Media

ISBN: 9781402007637

Category: Computers

Page: 390

View: 1940

In case you are considering to adopt this book for courses with over 50 students, please contact [email protected] for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.
Posted in Computers

Introduction to Mathematical Philosophy

Author: Bertrand Russell

Publisher: Spokesman Books

ISBN: 0851247385

Category: Mathematics

Page: 208

View: 6617

Bertrand Russell is probably the most important philosopher of mathematics in the 20th century. He brought together his formidable knowledge of the subject and skills as a gifted communicator to provide a classic introduction to the philosophy of mathematics.
Posted in Mathematics

Introduction to Mathematical Logic

Author: Alonzo Church

Publisher: Princeton University Press

ISBN: 9780691029061

Category: Mathematics

Page: 378

View: 5146

Logic is sometimes called the foundation of mathematics: the logician studies the kinds of reasoning used in the individual steps of a proof. Alonzo Church was a pioneer in the field of mathematical logic, whose contributions to number theory and the theories of algorithms and computability laid the theoretical foundations of computer science. His first Princeton book, The Calculi of Lambda-Conversion (1941), established an invaluable tool that computer scientists still use today. Even beyond the accomplishment of that book, however, his second Princeton book, Introduction to Mathematical Logic, defined its subject for a generation. Originally published in Princeton's Annals of Mathematics Studies series, this book was revised in 1956 and reprinted a third time, in 1996, in the Princeton Landmarks in Mathematics series. Although new results in mathematical logic have been developed and other textbooks have been published, it remains, sixty years later, a basic source for understanding formal logic. Church was one of the principal founders of the Association for Symbolic Logic; he founded the Journal of Symbolic Logic in 1936 and remained an editor until 1979 At his death in 1995, Church was still regarded as the greatest mathematical logician in the world.
Posted in Mathematics

Introduction to Logic and Theory of Knowledge

Lectures 1906/07

Author: Edmund Husserl

Publisher: Springer Science & Business Media

ISBN: 1402067275

Category: Philosophy

Page: 479

View: 9626

Claire Ortiz Hill The publication of all but a small, unfound, part of the complete text of the lecture course on logic and theory of knowledge that Edmund Husserl gave at Göttingen during the winter semester of 1906/07 became a reality in 1984 with the publication of Einleitung in die Logik und Erkenntnistheorie, Vorlesungen 1906/07 edited by 1 Ullrich Melle. Published in that volume were also 27 appendices containing material selected to complement the content of the main text in significant ways. They provide valuable insight into the evolution of Husserl’s thought between the Logical Investigations and Ideas I and, therefore, into the origins of phenomenology. That text and all those appendices but one are translated and published in the present volume. Omitted are only the “Personal Notes” dated September 25, 1906, November 4, 1907, and March 6, 1908, which were translated by Dallas Willard and published in his translation of Husserl’s Early 2 Writings in the Philosophy of Logic and Mathematics. Introduction to Logic and Theory of Knowledge, Lectures 1906/07 provides valuable insight into the development of the ideas fun- mental to phenomenology. Besides shedding considerable light on the genesis of phenomenology, it sheds needed light on many other dimensions of Husserl’s thought that have puzzled and challenged scholars.
Posted in Philosophy

A Concise Introduction to Mathematical Logic

Author: Wolfgang Rautenberg

Publisher: Springer Science & Business Media

ISBN: 0387342419

Category: Mathematics

Page: 256

View: 4427

While there are already several well known textbooks on mathematical logic this book is unique in treating the material in a concise and streamlined fashion. This allows many important topics to be covered in a one semester course. Although the book is intended for use as a graduate text the first three chapters can be understood by undergraduates interested in mathematical logic. The remaining chapters contain material on logic programming for computer scientists, model theory, recursion theory, Godel’s Incompleteness Theorems, and applications of mathematical logic. Philosophical and foundational problems of mathematics are discussed throughout the text.
Posted in Mathematics

Einführung in die Mathematische Logik

Ein Lehrbuch

Author: Wolfgang Rautenberg

Publisher: Springer-Verlag

ISBN: 3322915182

Category: Mathematics

Page: 256

View: 5104

Dieses Lehrbuch enthält über den Stoff einer einsemestrigen Einführungsvorlesung hinaus auch Material für eine Vorlesung über Logik für Informatiker (speziell logisches Programmieren), sowie in begrenztem Maße auch Basismaterial für eine Fortsetzung der Einführung in die Spezialrichtungen Modelltheorie, Rekursionstheorie und Beweistheorie. Für eine gekürzte Einführung in die Mathematische Logik kombiniert mit einer Einführung in die Mengenlehre empfiehlt sich für den logischen Teil der Stoff der ersten drei Kapitel. Unabhängig von Vorlesungskonzepten ist das Buch auch zum Selbststudium geeignet. Für einen Großteil der Übungen gibt es Lösungshinweise. Außer einer gewissen Schulung im mathematischen Schließen sind spezielle Vorkenntnisse nicht erforderlich; lediglich für Teile der Modelltheorie wären algebraische Grundkenntnisse wünschenswert. Die Verzeichnisse (Stichwörter, Symbole, Literatur) sind ausführlich und kommen der selbständigen Erarbeitung des Stoffes sehr entgegen. Das Buch ist inhaltsreich und flüssig geschrieben. Aus der Literatur bekannte Beweise wurden oft erheblich vereinfacht. Auch werden viele interessante Details präsentiert, die in der Lehrbuchliteratur nur schwer zu finden sind. Beispiele: Fragmente der 1. Stufe (etwa der Birkhoffsche Vollständigkeitssatz) und die Solovayschen Vollständigkeitssätze über Selbstreferenz. Die Gödelschen Unvollständigkeitssätze und ihr Umfeld werden besonders ausführlich behandelt. Nur gelegentlich werden weiterführende Betrachtungen angestellt, die mit Verweisen auf entsprechende Literaturstellen abschließen.
Posted in Mathematics

Discrete Mathematics: Introduction to Mathematical Reasoning

Author: Susanna S. Epp

Publisher: Cengage Learning

ISBN: 1133417078

Category: Mathematics

Page: 648

View: 5040

Susanna Epp's DISCRETE MATHEMATICS: AN INTRODUCTION TO MATHEMATICAL REASONING, provides the same clear introduction to discrete mathematics and mathematical reasoning as her highly acclaimed DISCRETE MATHEMATICS WITH APPLICATIONS, but in a compact form that focuses on core topics and omits certain applications usually taught in other courses. The book is appropriate for use in a discrete mathematics course that emphasizes essential topics or in a mathematics major or minor course that serves as a transition to abstract mathematical thinking. The ideas of discrete mathematics underlie and are essential to the science and technology of the computer age. This book offers a synergistic union of the major themes of discrete mathematics together with the reasoning that underlies mathematical thought. Renowned for her lucid, accessible prose, Epp explains complex, abstract concepts with clarity and precision, helping students develop the ability to think abstractly as they study each topic. In doing so, the book provides students with a strong foundation both for computer science and for other upper-level mathematics courses. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Posted in Mathematics

Sets, Functions, and Logic

An Introduction to Abstract Mathematics, Third Edition

Author: Keith Devlin

Publisher: CRC Press

ISBN: 1482286025

Category: Mathematics

Page: 160

View: 383

Keith Devlin. You know him. You've read his columns in MAA Online, you've heard him on the radio, and you've seen his popular mathematics books. In between all those activities and his own research, he's been hard at work revising Sets, Functions and Logic, his standard-setting text that has smoothed the road to pure mathematics for legions of undergraduate students. Now in its third edition, Devlin has fully reworked the book to reflect a new generation. The narrative is more lively and less textbook-like. Remarks and asides link the topics presented to the real world of students' experience. The chapter on complex numbers and the discussion of formal symbolic logic are gone in favor of more exercises, and a new introductory chapter on the nature of mathematics--one that motivates readers and sets the stage for the challenges that lie ahead. Students crossing the bridge from calculus to higher mathematics need and deserve all the help they can get. Sets, Functions, and Logic, Third Edition is an affordable little book that all of your transition-course students not only can afford, but will actually read...and enjoy...and learn from. About the Author Dr. Keith Devlin is Executive Director of Stanford University's Center for the Study of Language and Information and a Consulting Professor of Mathematics at Stanford. He has written 23 books, one interactive book on CD-ROM, and over 70 published research articles. He is a Fellow of the American Association for the Advancement of Science, a World Economic Forum Fellow, and a former member of the Mathematical Sciences Education Board of the National Academy of Sciences,. Dr. Devlin is also one of the world's leading popularizers of mathematics. Known as "The Math Guy" on NPR's Weekend Edition, he is a frequent contributor to other local and national radio and TV shows in the US and Britain, writes a monthly column for the Web journal MAA Online, and regularly writes on mathematics and computers for the British newspaper The Guardian.
Posted in Mathematics

Essentials of Mathematics

Introduction to Theory, Proof, and the Professional Culture

Author: Margie Hale

Publisher: MAA

ISBN: 0883857294

Category: Mathematics

Page: 180

View: 5876

Textbook and self-study guide for students beginning to study mathematics requiring proof.
Posted in Mathematics

Naive Mengenlehre

Author: Paul R. Halmos

Publisher: Vandenhoeck & Ruprecht

ISBN: 9783525405277

Category: Arithmetic

Page: 132

View: 6197

Posted in Arithmetic

A First Course in Mathematical Logic and Set Theory

Author: Michael L. O'Leary

Publisher: John Wiley & Sons

ISBN: 0470905883

Category: Mathematics

Page: 464

View: 1087

Rather than teach mathematics and the structure of proofssimultaneously, this book first introduces logic as the foundationof proofs and then demonstrates how logic applies to mathematicaltopics. This method ensures that readers gain a firmunderstanding of how logic interacts with mathematics and empowersthem to solve more complex problems. The study of logic andapplications is used throughout to prepare readers for further workin proof writing. Readers are first introduced tomathematical proof-writing, and then the book provides anoverview of symbolic logic that includes two-column logicproofs. Readers are then transitioned to set theory andinduction, and applications of number theory, relations, functions,groups, and topology are provided to further aid incomprehension. Topical coverage includes propositional logic,predicate logic, set theory, mathematical induction, number theory,relations, functions, group theory, and topology.
Posted in Mathematics

Einführung in die mathematische Logik

Klassische Prädikatenlogik

Author: Hans Hermes

Publisher: Springer-Verlag

ISBN: 3322996425

Category: Technology & Engineering

Page: 208

View: 1474

Das vorliegende, 1963 in erster Auflage erschienene Buch ist aus Vorlesungen hervorgegangen. Es soll eine Einführung in die klassische zweiwertige Prädikaten logik geben. Die Beschränkung auf die klassische Logik soll nicht besagen, daß diese Logik prinzipiell einen Vorzug vor anderen, nichtklassischen Logiken besitzt. Die klassische Logik empfiehlt sich jedoch als Einführung in die Logik wegen ihrer Einfachheit und als Fundament für die Anwendung deshalb, weil sie der klassischen Mathematik und damit den darauf aufgebauten exakten Wissenschaften zugrunde liegt. Das Buch wendet sich primär an Studierende der Mathematik, die in den An fängervorlesungen bereits einige grundlegende mathematische Begriffe, wie den Gruppenbegriff, kennengelernt haben. Der Leser soll dazu geführt werden, daß er die Vorteile einer Formalisierung einsieht. Der übergang von der Umgangssprache zu einer formalisierten Sprache, welcher erfahrungsgemäß gewisse Schwierigkeiten bereitet, wird eingehend besprochen und eingeübt. Die Analyse desmathemati schen Umgangs mit den grundlegenden mathematischen Strukturen führt in zwangloser Weise zum semantisch begründeten Folgerungsbegriff.
Posted in Technology & Engineering

Axiomatische Wahrheitstheorien

Author: Volker Halbach

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3050072253

Category: Mathematics

Page: 257

View: 2226

Posted in Mathematics